def no_profession(self): if self.target_coords is not None: changes = utilities.get_vector(self, self.target_coords[0], self.target_coords[1], self.rect.x + 15, self.rect.y + 22) self.change_x = changes[0] self.change_y = changes[1] if not self.collide_check(): self.move(self.current_map)
def eat(self, current_room): if self.target_coin is None or \ self.target_coin not in current_room.entity_list[coin.Coin]: self.target_coin = self.pick_target(self.neighbors, self.current_room) changes = utilities.get_vector(self, self.target_coin.rect.x + 2, self.target_coin.rect.y + 2, self.rect.x + 7, self.rect.y + 7) self.change_x = changes[0] self.change_y = changes[1] # pygame.sprite.spritecollide(self, self.current_room.entity_list[coin.Coin], True) self.coin_pickup(self.current_room)
def go_home(self): home_x = self.pit.rect.x + 15 home_y = self.pit.rect.y + 15 home_dist = utilities.distance((home_x), (home_y), self.rect.x, self.rect.y) if home_dist > 38: changes = utilities.get_vector(self, home_x, home_y, self.rect.x + 10, self.rect.y + 10) self.change_x = changes[0] self.change_y = changes[1] else: self.give_coins() self.coin_pickup(self.current_room)
def chase(self, current_room): changes = utilities.get_vector(self, self.target_goblin.rect.x + 7, self.target_goblin.rect.y + 7, self.rect.x + 10, self.rect.y + 10) self.change_x = changes[0] self.change_y = changes[1] goblin_hit_list = [] for each in self.neighbors: neighbor_hit_list = (pygame.sprite.spritecollide(self, each.entity_list[goblin.Goblin], True)) goblin_hit_list = goblin_hit_list + neighbor_hit_list for each in goblin_hit_list: self.goblins_eaten += 1 self.lifetime_goblins_eaten += 1 self.ticks_without_food = 0 current_room.deaths_by_ogre += 1 current_room.coins_on_death.append(each.lifetime_coins) current_room.death_ages.append(each.age) each.expire() self.killing = 'Yes' self.killframe = 0
def fire(self, current_level, pos, player_x, player_y, player): origin_modifier = {6: (30, -10), 5: (55, 5), 4: (55, 15), 3: (60, 20), 2: (50, 30), 1: (45, 40), 0: (10, 60)} new_projectile = projectiles.Bullet() vector_mod = origin_modifier[player.arm_state] new_projectile.rect.x = player_x + vector_mod[0] new_projectile.rect.y = player_y + vector_mod[1] x = pos[0] + 15 y = pos[1] + 15 if pos[0] < player_x + 65: x = player_x + 65 assets.pistol_shot_sound.play() vector = utilities.get_vector(new_projectile, x, y, new_projectile.rect.x, new_projectile.rect.y) new_projectile.change_x = vector[0] new_projectile.change_y = vector[1] current_level.projectiles_list.add(new_projectile) player.firing = self.automatic self.current_mag -= 1 if self.current_mag == 0: self.loaded = False
def go_home(self, home_x, home_y): home_dist = utilities.distance((home_x + 20), (home_y + 15), self.rect.x + 10, self.rect.y + 10) if home_dist > 75: changes = utilities.get_vector(self, self.home_hut.rect.x + 20, self.home_hut.rect.y + 15, self.rect.x + 10, self.rect.y + 10) self.change_x = changes[0] self.change_y = changes[1] else: action = random.randint(0, 800) if action <= 10: self.change_x = (self.speed / 2) elif 10 < action <= 20: self.change_x = -(self.speed / 2) elif 20 < action <= 30: self.change_y = (self.speed / 2) elif 30 < action <= 40: self.change_y = -(self.speed / 2) elif action > 750: self.change_x = 0 self.change_y = 0
df_main = pd.read_csv(file_path) w2v_model = KeyedVectors.load_word2vec_format(w2v_path, binary=True) # w2v_model = KeyedVectors.load(w2v_path) sid = SentimentIntensityAnalyzer() y = df_main['User'].values.tolist() X0 = [x.lower() if str(x) != "nan" else "" for x in df_main['Clean Tweets'].tolist()] Zipped_xy = [[*x] for x in zip(*[(xx, yy) for xx, yy in zip(X0, y) if int(yy) in valid_users])] y = np.array(Zipped_xy[1]) cv = CountVectorizer(max_features=3696, ngram_range=(1, 2)) cv.fit(Zipped_xy[0] + X_test) # w2v X1 = np.array([get_vector(x, w2v_model) for x in Zipped_xy[0]]) # Adding Sentiment X2 = np.array([list(sid.polarity_scores(x).values()) if str(x) != "nan" else [0, 0, 0, 0] for x in Zipped_xy[0]]) # CV X3 = cv.transform(Zipped_xy[0]).toarray() X = np.array([np.append(x1, x2, axis=0) for x1, x2 in zip(X1, X2)]) X = np.array([np.append(x1, x2, axis=0) for x1, x2 in zip(X, X3)]) print(X.shape, y.shape) """ TRAIN """ X, y = shuffle(X, y, random_state=0) CLF = ClassifierClass(vm=w2v_model, vm2=cv)
def get_vector(self): (self.change_x, self.change_y) = utilities.get_vector(self, self.sprite.rect.x + 19, self.sprite.rect.y, self.target_x, self.target_y)