示例#1
0
def load_airport_and_route(filter_data=True, deep_load=False):
    # Load airports
    a_path = airport_path if not deep_load else '../' + airport_path
    r_path = route_path if not deep_load else '../' + route_path

    airports = load_csv_col(a_path, cols=airpt_cols)
    routes = load_csv_col(r_path, cols=rt_cols)

    # Filter data
    cutoff = None if filter_data else 0
    airports, routes, route_indexes = filter_degree(airports,
                                                    routes,
                                                    d_cut_off=cutoff)
    airports, route_indexes = re_index(airports, route_indexes)

    return airports, route_indexes
data_path = '../../data/'
figure_path = '../../results/'
centrality_path = data_path + 'centrality_metrics/'
max_entropy_path = data_path + 'max_entropy/'
opt_path = data_path + 'optimal_distribution/'

versions = ['single_red', 'uniform_red']
optimal_headers = ['Maximum Entropy', 'Centrality', 'Adapted Centrality', 'Clique', 'Numerical Optimal']
centrality_headers = ['Closeness Centrality', 'Eigenvector Centrality', 'Degree Centrality', 'Betweenness Centrality']
max_entropy_headers = ['Eigenvector Centrality', 'Degree Centrality', 'Betweenness Centrality', 'Closeness Centrality']
time_limit = 100

for version in versions:
    # Get data
    centrality_data, _ = load_csv_col(centrality_path + version + '.csv',
                                                       with_headers=True, trans=True, parse=float)
    max_entropy_data, _ = load_csv_col(max_entropy_path + version + '.csv',
                                                         with_headers=True, trans=True, parse=float)
    opt_centrality = load_csv_col(centrality_path + 'opt_' + version + '.csv', trans=True, parse=float)
    opt_analytical = load_csv_col(opt_path + version + '_trial.csv', parse=float)[0]
    opt_clique = load_csv_col(data_path + 'clique/' + version + '.csv', parse=float)[0]

    # Remove data after time-limit for clarity
    centrality_data, _ = centrality_data[:, :time_limit], centrality_headers[0:4]
    max_entropy_data, _ = max_entropy_data[:, :time_limit], max_entropy_headers[0:4]

    # Take optimal metrics
    opt_entropy = max_entropy_data[1]

    # Define paths
    centrality_plot_path = figure_path + 'centrality_metrics/' + version + '.png'
示例#3
0
fig_path = '../../results/analysis/uniform.png'

# Run trial
if fresh_data:
    # Import data and generate network
    _, routes = load_airport_and_route(deep_load=True)
    netx = from_edgelist(routes)
    N = number_of_nodes(netx)
    net = network(N, graph=netx)
    budget = balls_per_node * N
    print('Data imported and network generated')

    # Calculate node degree
    degrees = array(sorted(degree(netx), key=lambda d: d[0]))[:, 1]
    max_d_node = argmax(degrees)

    # Initialize opponent distribution
    red = zeros(N)
    red[max_d_node] = budget

    # Run basic metrics
    net.set_initial_distribution(red=red)
    exposures = run_polya(net, steps=steps)

    save_trials(exposures, data_name, single_line=True)
else:
    exposures = load_csv_col(data_name, parse=float)

# Plot data
plot_infection(exposures, file_name=fig_path)
示例#4
0
    _, edges = load_airport_and_route(deep_load=True)
    netx = from_edgelist(edges)
    N = number_of_nodes(netx)
    budget = N * balls_per_node
    net = network(N, graph=netx)
    print('Data import and network generated')

    # Find and sort cliques
    cliques = sorted(find_cliques(netx), key=lambda c: len(c), reverse=True)

    trial_infections = []
    num_cliques = linspace(1, 120, 40).astype(int)
    for num in num_cliques:
        popularity_contest(net, num, budget)
        trial = run_polya(net, trials=2)
        trial_infections.append(trial[len(trial) - 1])
else:
    trial_infections, num_cliques = load_csv_col(data_path,
                                                 with_headers=True,
                                                 parse=float,
                                                 trans=True)

data = array([num_cliques, trial_infections])
save_trials(trial_infections, data_path, titles=num_cliques, single_line=True)
plot_scatter_data(data,
                  x_label='Number of Cliques',
                  y_label='Time n infection',
                  size=fig_size,
                  connect=True,
                  file_name=fig_path)
示例#5
0
    net = network(N, graph=netx)
    bud = N * balls_per_node

    ratios = linspace(.1, .9, 15)
    budgets = [(bud / ratio - bud) for ratio in ratios]
    print(ratios)
    trial_infection = []
    for budget in budgets:
        tmp = round(budget / N)
        B = [tmp] * N
        print(budget, tmp)
        net.set_initial_distribution(black=B)

        infection = run_polya(net, steps=num_steps, trials=5)
        trial_infection.append(infection[len(infection) - 1])

    save_trials(trial_infection, data_path, titles=ratios, single_line=True)
else:
    [trial_infection], ratios = load_csv_col(data_path,
                                             with_headers=True,
                                             parse=float)

ratios = [1 / (1 + float(ratio)) for ratio in ratios]
data = array([ratios, trial_infection]).astype(float)
plot_scatter_data(data,
                  file_name=fig_path,
                  x_label='$\\frac{R}{R+B}$',
                  y_label='$I_{250}$',
                  size=fig_size,
                  connect=True)
示例#6
0
        per_node = time + balls_per_node
        budget = N * per_node
        if uniform:
            red = [per_node] * N
        else:
            degrees = dict_to_arr(degree(netx))
            red = zeros(N)
            red[argmax(degrees)] = budget

        print(sum(red), budget, time)
        simple_centrality(net, 2, red=red)

        vals = run_polya(net, steps=time_limit)
        trial_infection.append(vals)
else:
    trial_infection, delay = load_csv_col(data_name, with_headers=True, trans=True, parse=float)
    delay = array(delay).astype(float)

trial_infection = array(trial_infection)
time_n = len(trial_infection[0]) - 1
time_N_infections = trial_infection[:, time_n]

# Save and plot data
if fresh_data:
    save_trials(trial_infection, data_name, titles=delay)

# plot_infection(trial_infection, leg=delay, multiple=True, file_name=img_name, blocking=False)

data = array([delay, time_N_infections])
plot_scatter_data(data, x_label='Time step delay', y_label='$I_{' + str(time_n) + '}$', connect=True,
                  file_name=scatter_name, size=fig_size)
    nodes, edges = load_airport_and_route(deep_load=True)
    netx = from_edgelist(edges)
    N = number_of_nodes(netx)
    net = network(N, graph=netx)

    x_vals = array(range(1, num_steps + 2))
    R = [balls_per_node] * N

    # Maximum Entropy
    # maximum_entropy(net, metric_id=1)
    max_ent_infections = run_polya(net,
                                   steps=num_steps,
                                   combine=False,
                                   trials=num_trials)
else:
    max_ent_infections = load_csv_col(max_ent_path, parse=float, trans=True)

max_ent_var = var(max_ent_infections, axis=0)

if fresh_data:
    save_trials(max_ent_infections, max_ent_path)

max_ent_data = zeros((2, len(max_ent_var)))
for i in range(len(max_ent_var)):
    max_ent_data[0, i] = i + 1
    max_ent_data[1, i] = max_ent_var[i]

plot_scatter_data(max_ent_data,
                  file_name=fig_path,
                  x_label='Time Step, n',
                  y_label='Variance',
示例#8
0
            for i in range(num):
                ind = int(round(cents[i, 0]))
                B[ind] = cents[i, 1] / total * budget

            print(sum(B))
            net.set_initial_distribution(black=B, red=R)

            tmp = run_polya(net, steps=time_limit)
            centrality_infections.append(tmp[len(tmp) - 1])
        trial_exposures.append(centrality_infections)

    trial_exposures = array(trial_exposures)
    save_trials(trial_exposures, data_path, titles=num_nodes)
else:
    trial_exposures, num_nodes = load_csv_col(data_path,
                                              with_headers=True,
                                              trans=True,
                                              parse=float)
    num_nodes = array(num_nodes).astype(float)

# plot data
data = []
for trial in trial_exposures:
    data.append([num_nodes, trial])
data = array(data)

plot_scatter_data([data[0], data[1], data[3], data[2]],
                  x_label='Number of Nodes with Black Balls, $m$',
                  connect=True,
                  y_label='$I_{' + str(time_limit) + '}$',
                  file_name=scat_path,
                  size=(10, 7.5),
from utilities import load_csv_col, fig_size
from utilities.plotting import plot_scatter_data
from numpy import array

# Define constants
base_path = '../../data/clique/'
simple_path = base_path + 'simple.csv'
single_path = base_path + 'simple_single.csv'
popular_path = base_path + 'popular.csv'
fig_path = '../../results/clique/compare.png'
headers = ['Simple Clique', 'Popular Clique']

# Import data
[simple_data], simple_nums = load_csv_col(simple_path,
                                          with_headers=True,
                                          parse=float)
# [single_data], single_nums = load_csv_col(single_path, with_headers=True, parse=float)
[popular_data], popular_nums = load_csv_col(popular_path,
                                            with_headers=True,
                                            parse=float)

# Package data
data = array([
    [simple_nums, simple_data],
    # [single_nums, single_data],
    [popular_nums, popular_data]
]).astype(float)[:, :, 1:]

# Plot data
plot_scatter_data(data,
                  multiple=True,