示例#1
0
                ydir = 0
            if util.includeVelocity == True:
                features.append(yvel)
            if util.includeAcceleration == True:
                features.append(yacc)
            if util.includeHeading == True:
                features.append(heading)
            if util.includeYDirection == True:
                features.append(ydir)

            tdX = np.array(util.removeColFromRow(features, 0))
            tdY = np.array(util.removeColFromRow(features, 1))
            predY = neighY.predict(tdY)

            actual = test1Data[i + offset][1]
            prediction = predY[0]
            actuals.append(actual)
            predictions.append(prediction)
#            errors.append(util.error([actual], [prediction]))

if onlyTrainingAndCV == False:
    #    util.plotLines(actuals, predictions, 'Actual position', 'Predicted position')
    #    util.plotGraph(actuals, predictions, 'Actual position', 'Predicted position')
    util.plotLine(actuals, 'Actual position')
    util.plotLine(predictions, 'Predicted position')
    #    util.plotLine(errors, 'Error graph')
    print len(actuals), len(predictions)
#    print np.sum(errors)
else:
    util.plotLine(cvScoresY, 'CV label y')
示例#2
0
        #parse the input txt,eg:text01.txt
        givenData = parseTxt(filename)

        #use the last 60 frames of gieven input, eg test01.txt as actual
        actual = givenData[len(givenData) - 60:]

        # feed the program input data with last 60 frames chopped off
        allData = consolidateAllData()
        output = particleFilterPrediction(givenData[:len(givenData) - 60],
                                          allData)

        #####need to write output to txt#########

        #use utility to test our error and make plots
        errors = []
        for i in range(0, len(output)):
            #errors.append(util.error([actual[i]],[output[i]]))
            ok = ((output[i][0] - actual[i][0])**2) + (
                (output[i][1] - actual[i][1])**2)
            errors.append(ok)

        util.plotGraph(actual, output, 'Actual position', 'Predicted position')
        util.plotLine(errors, 'Error graph')
        print len(actual), len(output)
        print "L2 error is >>>>>>>>"
        print math.sqrt(np.sum(errors))

    else:
        sys.exit(1)
示例#3
0
        test1 = open('inputs/test01.txt')
        test1Data = np.loadtxt(test1, delimiter=',')
        test1Data = util.normalizeData(test1Data)
        errors = []
        NUM_INPUTS = len(test1Data) - offset
        for i in range(1750, NUM_INPUTS):
            current = test1Data[i]
            features = util.createFeatureRow(test1Data, i, offset, current)
            td = np.array(features)
            predX = neigh.predict(td)
            predY = neighY.predict(td)

            actual = test1Data[i + offset]
            prediction = [predX[0], predY[0]]
            actuals.append(actual)
            predictions.append(prediction)
            errors.append(util.error([actual], [prediction]))

if onlyTrainingAndCV == False:
    #    util.plotLines(actuals, predictions, 'Actual position', 'Predicted position')
    #    util.plotGraph(actuals, predictions, 'Actual position', 'Predicted position')
    util.plotData(actuals, 'Actual position')
    util.plotData(predictions, 'Predicted position')
    util.plotLine(errors, 'Error graph')
    print len(actuals), len(predictions)
    print np.sum(errors)
else:
    util.plotLine(cvScoresX, 'CV label x')
    util.plotLine(cvScoresY, 'CV label y')
#    util.plotLines(cvScoresX, cvScoresY, 'CV label X', 'CV label y')