def __init__(self, x, y1_, y2_, learning_rate): """Creates a NonLinearModel. Inherits from Model. Parameters: x: the placeholder for the input tensor. y1_: the placeholder for the output 1 tensor. y2_: the placeholder for the output 2 tensor. Returns: A NonLinearModel object. """ model.Model.__init__(self) # get sizes for the input and outputs num_cols_in = x.get_shape().as_list()[1] num_states_in = x.get_shape().as_list()[2] num_states_out1 = y1_.get_shape().as_list()[1] num_cols_out2 = y2_.get_shape().as_list()[1] num_states_out2 = y2_.get_shape().as_list()[2] # the first layer flattens the data so that it can be passed through a fully connected layer x_flat = utilities.reshape(x, [-1, num_cols_in*num_states_in]) hidden1 = utilities.fc_layer(x_flat, num_cols_in*num_states_in, num_cols_in*num_states_in*4, layer_name='hidden_1') hidden2 = utilities.fc_layer(hidden1, num_cols_in*num_states_in*4, num_cols_in*num_states_in*2, layer_name='hidden_2') # the dropout layer reduces over fitting dropped, self._keep_prob = utilities.dropout(hidden2) # the network splits here: # the first softmax layer reduces the output to a percentage chance for each of the output states output1 = utilities.fc_layer(dropped, 2*num_cols_in*num_states_in, num_states_out1, 'softmax_1', act=tf.nn.softmax) # the second softmax layer reduces the output to a percentage chance for each SNPs output states with tf.name_scope('softmax_2'): fc_layer = utilities.fc_layer(dropped, 2*num_cols_in*num_states_in, num_states_out2*num_cols_out2, layer_name='identity', act=tf.identity) output2 = tf.nn.softmax(utilities.reshape(fc_layer, [-1, num_cols_out2, num_states_out2], name_suffix='3')) # each of the loss layers compares the probability distributions between the correspinding outputs to get an error metric for the network's outputs self._loss1 = utilities.calculate_cross_entropy(output1, y1_, name_suffix='1') self._loss2 = utilities.calculate_cross_entropy(output2, y2_, name_suffix='2') # these losses are compined into one for the training with tf.name_scope('combined_loss'): combined_loss = tf.add(self._loss1, self._loss2) # the loss is used with the back propagtion algorithm to use gradient descent based ADAM optimization to teach the network self._train_step = utilities.train(learning_rate, combined_loss, training_method=utilities.Optimizer.Adam, name_suffix='1') # the accuracies for each output are calculated by comparing them to the correct outputs self._accuracy1 = utilities.calculate_epi_accuracy(output1, y1_, name_suffix='1') self._accuracy2 = utilities.calculate_snp_accuracy(output2, y2_, name_suffix='2') # find the top predicted snps self._epi_snps, self._count = utilities.predict_snps(output2) # merge all the summaries self._merged = tf.merge_all_summaries()
def testReshapeOps(self): """Asserts that the reshape correctly adds operations to the graph. Arguments: Nothing. Returns: Nothing. """ with self.test_session() as sess: input_tensor = tf.zeros([20, 30]) _ = utilities.reshape(input_tensor, [2, 300], name_suffix='1') op_dict = {"reshape_1/Reshape": "Reshape"} tf.python.framework.test_util.assert_ops_in_graph(op_dict, tf.get_default_graph())
def testReshapeOps(self): """Asserts that the reshape correctly adds operations to the graph. Arguments: Nothing. Returns: Nothing. """ with self.test_session() as sess: input_tensor = tf.zeros([20, 30]) _ = utilities.reshape(input_tensor, [2, 300], name_suffix='1') op_dict = {"reshape_1/Reshape": "Reshape"} tf.python.framework.test_util.assert_ops_in_graph( op_dict, tf.get_default_graph())
def testFlattening(self): """Asserts that the reshape returns a result with the correct values in each dimension. Arguments: Nothing. Returns: Nothing. """ input_tensor = tf.zeros([20, 30]) output_tensor = utilities.reshape(input_tensor, [-1, 600]) output_tensor_shape = tf.shape(output_tensor) with self.test_session() as sess: sess.run(tf.initialize_all_variables()) self.assertAllEqual(np.array([1, 600]), sess.run(output_tensor_shape))
def __init__(self, x, y1_, y2_, learning_rate): """Creates a PoolConvModel. Inherits from Model. Parameters: x: the placeholder for the input tensor. y1_: the placeholder for the output 1 tensor. y2_: the placeholder for the output 2 tensor. Returns: A PoolConvModel object. """ model.Model.__init__(self) # get sizes for the input and outputs num_cols_in = x.get_shape().as_list()[1] num_states_out1 = y1_.get_shape().as_list()[1] num_cols_out2 = y2_.get_shape().as_list()[1] num_states_out2 = y2_.get_shape().as_list()[2] # first layer reshapes the input to make it 4d as required by the convolution layers x_4d = utilities.reshape(x, [-1, num_cols_in, 3, 1], name_suffix='1') # the first convolution layer preserves the shape and increases the number of channels to 8 conv1 = utilities.conv_layer(x_4d, [3, 3, 1, 8], padding='SAME', name_suffix='1') # the first pooling layer simply halves the data size along the SNP dimmension pool1 = utilities.pool_layer(conv1, shape=[1, 2, 1, 1], strides=[1, 2, 1, 1], name_suffix='1') # the second convolution layer preserves the shape and increases the number of channels to 16 conv2 = utilities.conv_layer(pool1, [3, 3, 8, 16], padding='SAME', name_suffix='2') # the second pooling layer halves the data size along the SNP dimmension pool2 = utilities.pool_layer(conv2, shape=[1, 2, 1, 1], strides=[1, 2, 1, 1], name_suffix='2') # the third convolution layer reduces reduces the number of states dimmension to size 1 and increases the number of channels to 32 conv3 = utilities.conv_layer(pool2, [1, 3, 16, 32], padding='VALID', name_suffix='3') # the third pooling layer halves the data size along the SNP dimmension pool3 = utilities.pool_layer(conv3, shape=[1, 2, 1, 1], strides=[1, 2, 1, 1], name_suffix='3') # the next layer flattens the data so that it can be passed through a fully connected layer final_shape = pool3.get_shape() flatten_size = int(final_shape[1] * final_shape[2] * final_shape[3]) flatten = utilities.reshape(pool3, [-1, flatten_size], name_suffix='2') # the first fully connected layer halves the data size hidden1 = utilities.fc_layer(flatten, flatten_size, int(flatten_size / 2), layer_name='hidden_1') # the second fully connected layer halves the data size again hidden2 = utilities.fc_layer(hidden1, int(flatten_size / 2), int(flatten_size / 4), layer_name='hidden_2') # the dropout layer reduces over fitting dropped, self._keep_prob = utilities.dropout(hidden2, name_suffix='1') # the network splits here: # the first softmax layer reduces the output to a percentage chance for each of the output states output1 = utilities.fc_layer(dropped, int(flatten_size / 4), num_states_out1, layer_name='softmax_1', act=tf.nn.softmax) # the second softmax layer reduces the output to a percentage chance for each SNPs output states with tf.name_scope('softmax_2'): fc_layer = utilities.fc_layer(dropped, int(flatten_size / 4), num_states_out2 * num_cols_out2, layer_name='identity', act=tf.identity) #output2 = tf.sigmoid(utilities.reshape(fc_layer, [-1, num_cols_out2, 1], name_suffix='3')) output2 = tf.nn.softmax( utilities.reshape(fc_layer, [-1, num_cols_out2, num_states_out2], name_suffix='3')) # each of the loss layers compares the probability distributions between the correspinding outputs to get an error metric for the network's outputs self._loss1 = utilities.calculate_cross_entropy(output1, y1_, name_suffix='1') #self._loss2 = utilities.calculate_cross_entropy(output2, utilities.get_causing_epi_probs(y2_), name_suffix='2') self._loss2 = utilities.calculate_cross_entropy(output2, y2_, name_suffix='2') # these losses are compined into one for the training with tf.name_scope('combined_loss'): combined_loss = tf.add(self._loss1, self._loss2) # the loss is used with the back propagtion algorithm to use gradient descent based ADAM optimization to teach the network self._train_step = utilities.train( learning_rate, combined_loss, training_method=utilities.Optimizer.Adam, name_suffix='1') # the accuracies for each output are calculated by comparing them to the correct outputs self._accuracy1 = utilities.calculate_epi_accuracy(output1, y1_, name_suffix='1') self._accuracy2 = utilities.calculate_snp_accuracy(output2, y2_, name_suffix='2') # find the top predicted snps self._epi_snps, self._count = utilities.predict_snps(output2) # merge all the summaries self._merged = tf.merge_all_summaries()
def __init__(self, x, y1_, y2_, learning_rate): """Creates a RecurrentModel. Inherits from Model. Parameters: x: the placeholder for the input tensor. y1_: the placeholder for the output 1 tensor. y2_: the placeholder for the output 2 tensor. Returns: A RecurrentModel object. """ model.Model.__init__(self) # max_length = 100 # # print("x shape: %s" % x.get_shape()) # x = utilities.reshape(x, [-1, max_length, int(x.get_shape()[2])]) # print("x shape: %s" % x.get_shape()) # get sizes for the input and outputs num_states_out1 = y1_.get_shape().as_list()[1] num_cols_out2 = y2_.get_shape().as_list()[1] num_states_out2 = y2_.get_shape().as_list()[2] # parameters for the RNN num_neurons = 10 num_layers = 1 self._keep_prob = tf.placeholder(tf.float32) # setup the RNN cell cell = GRUCell(num_neurons) # Or LSTMCell(num_neurons) cell = DropoutWrapper(cell, output_keep_prob=self._keep_prob) cell = MultiRNNCell([cell] * num_layers) output, _ = tf.nn.dynamic_rnn(cell, x, dtype=tf.float32, swap_memory=True, parallel_iterations=1) print("output shape: %s" % output.get_shape()) output = tf.transpose(output, [1, 0, 2]) print("output shape: %s" % output.get_shape()) last = tf.gather(output, int(output.get_shape()[0]) - 1) print("last shape: %s" % last.get_shape()) hidden1 = utilities.fc_layer(last, num_neurons, num_neurons, layer_name='hidden_1') hidden2 = utilities.fc_layer(hidden1, num_neurons, num_neurons, layer_name='hidden_2') # the dropout layer reduces over fitting dropped, _ = utilities.dropout(hidden2, keep_prob=self._keep_prob) # the network splits here: # the first softmax layer reduces the output to a percentage chance for each of the output states output1 = utilities.fc_layer(dropped, num_neurons, num_states_out1, 'softmax_1', act=tf.nn.softmax) # the second softmax layer reduces the output to a percentage chance for each SNPs output states with tf.name_scope('softmax_2'): fc_layer = utilities.fc_layer(dropped, num_neurons, num_states_out2 * num_cols_out2, layer_name='identity', act=tf.identity) output2 = tf.nn.softmax( utilities.reshape(fc_layer, [-1, num_cols_out2, num_states_out2], name_suffix='3')) # each of the loss layers compares the probability distributions between the correspinding outputs to get an error metric for the network's outputs self._loss1 = utilities.calculate_cross_entropy(output1, y1_, name_suffix='1') self._loss2 = utilities.calculate_cross_entropy(output2, y2_, name_suffix='2') # these losses are compined into one for the training with tf.name_scope('combined_loss'): combined_loss = tf.add(self._loss1, self._loss2) # the loss is used with the back propagtion algorithm to use gradient descent based ADAM optimization to teach the network self._train_step = utilities.train( learning_rate, combined_loss, training_method=utilities.Optimizer.Adam, name_suffix='1') # the accuracies for each output are calculated by comparing them to the correct outputs self._accuracy1 = utilities.calculate_epi_accuracy(output1, y1_, name_suffix='1') self._accuracy2 = utilities.calculate_snp_accuracy(output2, y2_, name_suffix='2') # find the top predicted snps self._epi_snps, self._count = utilities.predict_snps(output2) # merge all the summaries self._merged = tf.merge_all_summaries()
def __init__(self, x, y1_, y2_, learning_rate): """Creates a ScalingModel. Inherits from Model. Parameters: x: the placeholder for the input tensor. y1_: the placeholder for the output 1 tensor. y2_: the placeholder for the output 2 tensor. Returns: A ScalingModel object. """ model.Model.__init__(self) # get sizes for the input and outputs num_cols_in = x.get_shape().as_list()[1] num_states_out1 = y1_.get_shape().as_list()[1] num_cols_out2 = y2_.get_shape().as_list()[1] num_states_out2 = y2_.get_shape().as_list()[2] self._keep_prob = tf.placeholder(tf.float32) # first layer reshapes the input to make it 4d as required by the convolution layers x_4d = utilities.reshape(x, [-1, num_cols_in, 3, 1], name_suffix='1') # the first convolution layer preserves the shape and increases the number of channels to 8 conv1 = utilities.conv_layer(x_4d, [3, 3, 1, 8], padding='SAME', name_suffix='1') # the first pooling layer simply halves the data size along the SNP dimmension pool1 = utilities.pool_layer(conv1, shape=[1, 2, 1, 1], strides=[1, 2, 1, 1], name_suffix='1') # the second convolution layer preserves the shape and increases the number of channels to 16 conv2 = utilities.conv_layer(pool1, [3, 3, 8, 16], padding='SAME', name_suffix='2') # the second pooling layer halves the data size along the SNP dimmension pool2 = utilities.pool_layer(conv2, shape=[1, 2, 1, 1], strides=[1, 2, 1, 1], name_suffix='2') # the third convolution layer reduces reduces the number of states dimmension to size 1 and increases the number of channels to 32 conv3 = utilities.conv_layer(pool2, [1, 3, 16, 32], padding='VALID', name_suffix='3') # the third pooling layer halves the data size along the SNP dimmension pool3 = utilities.pool_layer(conv3, shape=[1, 2, 1, 1], strides=[1, 2, 1, 1], name_suffix='3') # the next layer flattens the data so that it can be passed through a fully connected layer final_shape = pool3.get_shape() flatten_size = int(final_shape[1]*final_shape[2]*final_shape[3]) flatten = utilities.reshape(pool3, [-1, flatten_size], name_suffix='2') # the network splits here: # the first softmax layer reduces the output to a percentage chance for each of the output states hidden1 = utilities.fc_layer(flatten, flatten_size, int(flatten_size/100), layer_name='hidden_1') dropped1, _ = utilities.dropout(hidden1, name_suffix='1', keep_prob=self._keep_prob) hiddenx = utilities.fc_layer(dropped1, int(flatten_size/100), int(flatten_size/200), layer_name='hidden_x') droppedx, _ = utilities.dropout(hiddenx, name_suffix='x', keep_prob=self._keep_prob) output1 = utilities.fc_layer(droppedx, int(flatten_size/200), num_states_out1, layer_name='softmax_1', act=tf.nn.softmax) # the first fully connected layer halves the data size hidden2_1 = utilities.fc_layer(flatten, flatten_size, 100, layer_name='hidden_2_1', act=tf.identity) hidden2_2 = utilities.fc_layer(hidden2_1, 100, int(flatten_size/2), layer_name='hidden_2_2') # the dropout layer reduces over fitting dropped2, _ = utilities.dropout(hidden2_2, name_suffix='2', keep_prob=self._keep_prob) # the second fully connected layer halves the data size again hidden3_1 = utilities.fc_layer(dropped2, int(flatten_size/2), 100, layer_name='hidden_3_1', act=tf.identity) hidden3_2 = utilities.fc_layer(hidden3_1, 100, int(flatten_size/4), layer_name='hidden_3_2') dropped3, _ = utilities.dropout(hidden3_2, name_suffix='3', keep_prob=self._keep_prob) # the second softmax layer reduces the output to a percentage chance for each SNPs output states with tf.name_scope('softmax_2'): fc_layer_1 = utilities.fc_layer(dropped3, int(flatten_size/4), 100, layer_name='identity_1', act=tf.identity) fc_layer_2 = utilities.fc_layer(fc_layer_1, 100, num_states_out2*num_cols_out2, layer_name='identity_2', act=tf.identity) output2 = tf.nn.softmax(utilities.reshape(fc_layer_2, [-1, num_cols_out2, num_states_out2], name_suffix='3')) # each of the loss layers compares the probability distributions between the correspinding outputs to get an error metric for the network's outputs self._loss1 = utilities.calculate_cross_entropy(output1, y1_, name_suffix='1') self._loss2 = utilities.calculate_cross_entropy(output2, y2_, name_suffix='2') # these losses are compined into one for the training with tf.name_scope('combined_loss'): combined_loss = tf.add(self._loss1, self._loss2) # the loss is used with the back propagtion algorithm to use gradient descent based ADAM optimization to teach the network self._train_step = utilities.train(learning_rate, combined_loss, training_method=utilities.Optimizer.Adam, name_suffix='1') # the accuracies for each output are calculated by comparing them to the correct outputs self._accuracy1 = utilities.calculate_epi_accuracy(output1, y1_, name_suffix='1') self._accuracy2 = utilities.calculate_snp_accuracy(output2, y2_, name_suffix='2') # find the top predicted snps self._epi_snps, self._count = utilities.predict_snps(output2) # merge all the summaries self._merged = tf.merge_all_summaries()