if __name__ == '__main__': ut.list_to_csv(head=head) result = [] df_list = [] name_list = ut_light.gen_list_mix(main_path=dataset_path,data_type='bgs',mix_size="*sq_L3_I5_*") for index, name in enumerate(name_list): for threshold in thresholds: algo_name = "SEA_{}_{}".format(bin_sizes,block_type) ut.checkFolderandCreate("{}\\ROC\\{}".format(main_path, algo_name)) pickle_ROC_file = '{}\\ROC\\{}\\_{}_threshold{}.pkl'.format(main_path, algo_name, name, threshold) if not os.path.exists(pickle_ROC_file): result = [] data = ut_light.load_light_select_dataset(input_path=dataset_path, file_name=name, is_mix=is_mix) print("##### cal name : {} , threshold = {} #####".format(name, threshold)) ROC_row = genROCFile(name=name, data=data, threshold=threshold) result.append(ROC_row) df = pd.DataFrame(result, columns=ROC_head) with open(pickle_ROC_file, 'wb') as output: pickle.dump(df, output) else: print("##### Load name : {} , threshold = {} #####".format(name, threshold)) with open(pickle_ROC_file, 'rb') as pickle_input: df = pickle.load(pickle_input) df_list.append(df) df = ut.union_DF(df_list=df_list, head_list=ROC_head) print("a") plt = ut.plot_roc_curve_dy(df=df, name_list=name_list) plt.show()
directorys = os.listdir(input_path) directorys_matching = fnmatch.filter(directorys, pattern) return directorys_matching if __name__ == '__main__': name_list = ut_light.gen_list_title(data_type='bgs') # name_list = ut_light.gen_list_mix(dataset_path, data_type='bgs',mix_size=mix_size) path = "{}\\ROC".format(main_path) directorys = get_direct_from_pattern(input_path=path, input_pattern=pattern) for directory in directorys: path_directory = "{}\\ROC\\{}".format(main_path, directory) pk_list = os.listdir(path_directory) df_list = [] for index, pk_file in enumerate(pk_list): pickle_ROC_file = "{}\\{}".format(path_directory, pk_file) with open(pickle_ROC_file, 'rb') as pickle_input: df = pickle.load(pickle_input) df_list.append(df) # df_list.append(ut_light.last_df_list(head_list=ROC_head)) df = ut.union_DF(df_list=df_list, head_list=ROC_head) plt = ut.plot_roc_curve_dy(df=df, name_list=name_list, algo_name=directory) plt.savefig("{}\\pic\\{}_{}.png".format(main_path, directory, mix_size.replace("*", ""))) plt.show() plt.clf() # ut.dftocsv(dataframe_input = df,file_name="csv\\{}.csv".format(directory))