def mpPlot(): listFiles = ut_service.getListLC_test() if request.method == 'POST': fileName = str(request.form.get('selectFile')) inputDuration = int(request.form.get('inputDuration')) inputHeight = int(request.form.get('inputHeight')) subsequence_length = int(request.form.get('input_subsequence_length')) rawInstances, transList = ut_service.getDataLC_test( fileName, L=int(inputHeight), I=int(inputDuration)) x_axis = list(range(len(rawInstances))) mp_list = ut_gen.genMartixProfile( instances=rawInstances, timestamp=x_axis, subsequence_length=subsequence_length) xmin = min(mp_list) xmax = max(mp_list) for i, x in enumerate(mp_list): mp_list[i] = (x - xmin) / (xmax - xmin) data = {"instances": rawInstances, "timestamp": x_axis} js, div = ut_exBok.export_JsDiv_RawMP(data=data, mp_list=mp_list, isUTC=False) return render_template("html/mp/mp_test_plot.html", js=js, div=div, file_name=fileName)
def rrcfPlot(): listFiles = ut_service.getListLC_test() if request.method == 'POST': fileName = str(request.form.get('selectFile')) inputDuration = int(request.form.get('inputDuration')) inputHeight = int(request.form.get('inputHeight')) rawInstances, transList = ut_service.getDataLC_test( fileName, L=int(inputHeight), I=int(inputDuration)) x_axis = list(range(len(rawInstances))) rrcf_resultList = ut_gen.getRRCFresult(fileName=fileName, duration=inputDuration, height=inputHeight) rrcf = { "instances": rrcf_resultList, "timestamp": x_axis[0:len(rrcf_resultList)] } data = {"instances": rawInstances, "timestamp": x_axis} js, div = ut_exBok.export_JsDiv_Single(data=data, legend="RAW", color='black', isCircle=True) jsRRCF, divRRCF = ut_exBok.export_JsDiv_Single(data=rrcf, legend="RRCF", color='red', isCircle=True) return render_template("html/rrcf/rrcf_test_plot.html", js=js, div=div, jsRRCF=jsRRCF, divRRCF=divRRCF, file_name=fileName)
def xmeanPlot(): listFiles = ut_service.getListLC_test() if request.method == 'POST': fileName = str(request.form.get('selectFile')) amount_initial_centers = int( request.form.get('amount_initial_centers')) kmax = int(request.form.get('kmax')) FdataMDF, FtimestampMDF = ut_service.getMDFData(fileName) resultDic = ut_cluster.cluster_xMean( listInput=FdataMDF, amount_initial_centers=amount_initial_centers, kmax=kmax) TOOLTIPS = [ ("index", "$index"), ("(x,y)", "@x{0,0.000000}, $y"), ] js, div = ut_bokeh.JSandDivXMeanPlot(x_axis=FtimestampMDF, y_axisRaw=FdataMDF, resultDic=resultDic, title=fileName, TOOLTIPS=TOOLTIPS) # js, div = ut_bokeh.JSandDivDoublePlot(x_axis=FtimestampMDF, y_axisRaw=FdataMDF, y_axisBin=sketchInstances, # title=fileName, transList=transList,alarmList=alarmList) # # rows = corePlot.getDataTableMeanVarianceBin() return render_template("html/LC_test/lc_test_plot.html", jsResult=js, divResult=div, listFiles=listFiles)
def lcFixPlot(): listFiles = ut_service.getListLC_test() if request.method == 'POST': fileName = str(request.form.get('selectFile')) inputDuration = int(request.form.get('inputDuration')) inputHeight = int(request.form.get('inputHeight')) windowSize = int(request.form.get('inputWindowSize')) rawInstances, transList = ut_service.getDataLC_test( fileName, L=int(inputHeight), I=int(inputDuration)) x_axis = list(range(len(rawInstances))) data = { "instances": rawInstances, "timestamp": x_axis, "fileName": fileName, "windowSize": windowSize } sketchInstances = ut_gen.genFixBin(binSize=windowSize, instances=rawInstances) add_on = [] for tran in transList: add_on.append({ 'type': 'anwser', 'start': int(tran[0]), 'end': int(tran[1]) }) # js, div = ut_exBok.export_JsDiv_saxcompare(data=data, add_on=add_on) # js, div = ut_bokeh.JSandDivDoublePlotStandard( x_axis=x_axis, y_axisRaw=rawInstances, y_axisBin=sketchInstances, title=fileName, add_on=add_on, legend_label='Fixed') rows = [] return render_template("html/LC_test/lc_test_plot.html", jsResult=js, divResult=div, listFiles=listFiles, rows=rows)
def lcPlot(): listFiles = ut_service.getListLC_test() if request.method == 'POST': fileName = str(request.form.get('selectFile')) inputDuration = int(request.form.get('inputDuration')) inputHeight = int(request.form.get('inputHeight')) windowSize = int(request.form.get('inputWindowSize')) initialBin = int(request.form.get('inputInitialBin')) rawInstances, transList = ut_service.getDataLC_test( fileName, L=int(inputHeight), I=int(inputDuration)) x_axis = list(range(len(rawInstances))) corePlot = sketchDyBinService(windowSize=windowSize, initialBin=initialBin, isOnline=False) sketchInstances = corePlot.sketchMode(instances=rawInstances) dictResult = corePlot.getListResultTest() threshold_tTest = float(request.form.get('threshold_tTest')) if threshold_tTest == 0: alarmList = [] else: alarmList = ut_service.genTranFromTtest( dictResult=dictResult, threshold_tTest=threshold_tTest) js, div = ut_bokeh.JSandDivDoublePlotWithToggle( x_axis=x_axis, y_axisRaw=rawInstances, y_axisBin=sketchInstances, title=fileName, transList=transList, alarmList=alarmList) rows = corePlot.getDataTableMeanVarianceBin() return render_template("html/LC_test/lc_test_plot.html", jsResult=js, divResult=div, listFiles=listFiles, rows=rows)
def rrcfMain(): listFiles = ut_service.getListLC_test() return render_template("html/rrcf/lc_rrcf_main.html", listFiles=listFiles)
def mpMain(): listFiles = ut_service.getListLC_test() return render_template("html/mp/lc_mp_main.html", listFiles=listFiles)
def lcMain(): listFiles = ut_service.getListLC_test() return render_template("html/LC_test/lc_test_main.html", listFiles=listFiles)
lc_path_answer = "sq_L{}_I{}\\answer\\".format(L, I) path_to_lc_data_file = "{}{}".format(dataset_path, lc_path_test) path_to_lc_ans_file = "{}{}".format(dataset_path, lc_path_answer) html_path = "sq_L{}_I{}\\html\\".format(L, I) png_path = "sq_L{}_I{}\\bokeh_pic\\".format(L, I) driver = webdriver.Chrome(executable_path="C:\\chromedriver\\chromedriver.exe") pathHtmlOutput = "{}{}".format(dataset_path, html_path) pathPngOutput = "{}{}".format(dataset_path, png_path) data = {'inputWindowSize': 100, 'inputInitialBin': 3} listFile = ut_web.getListLC_test(L=L,I=I) for indexFile, fileName in enumerate(listFile): print(fileName) isFoundHtml = ut.isFileNameInFolder(path=pathHtmlOutput, fileName="{}.html".format(fileName)) isFoundPng = ut.isFileNameInFolder(path=pathPngOutput, fileName="{}.png".format(fileName)) if not (isFoundHtml & isFoundPng): rawInstances, transList = ut_service.getDataLC_test(fileName,L=L,I=I) x_axis = list(range(len(rawInstances))) plotRaw = ut_bokeh.exportPlot(x_axis=x_axis, y_axis=rawInstances, fileName=fileName, transList=transList)