示例#1
0
nkids0=x_df[ ['nkids_baseline']   ].values

#marital status at baseline
married0=x_df[ ['d_marital_2']   ].values

#age of child at baseline
agech0_a=x_df[['age_t0A']].values[:,0]
agech0_b=x_df[['age_t0B']].values[:,0]
d_childb=x_df[['d_childB']].values
d_childa=x_df[['d_childA']].values
"""

#Defines the instance with parameters
param0 = util.Parameters(alphap, alphaf, eta, gamma1, gamma2, gamma3, tfp,
                         sigma2theta, varphi, rho_theta_epsilon, rho_theta_ab,
                         wagep_betas, income_male_betas, marriagep_betas,
                         kidsp_betas, eitc_list, afdc_list, snap_list, cpi,
                         lambdas, kappas, pafdc, psnap, mup)

#For montercarlo integration
D = 20

#How many hours is part- and full-time work
hours_p = 15
hours_f = 40

hours = np.zeros(N)
childcare = np.zeros(N)
wr, cs, ws = 1, 1, 1

######################################################################
示例#2
0
def elast_gen(bs, shocks):

    eta = bs[0]
    alphap = bs[1]
    alphaf = bs[2]

    #wage process
    wagep_betas = np.array([bs[3], bs[4], bs[5], bs[6], bs[7]]).reshape((5, 1))

    #Production function [young[cc0,cc1],old]
    gamma1 = bs[8]
    gamma2 = bs[9]
    gamma3 = bs[10]
    tfp = bs[11]

    kappas = [[bs[12], bs[13], bs[14], bs[15]],
              [bs[16], bs[17], bs[18], bs[19]]]

    rho_theta_epsilon = bs[20]

    lambdas = [1, 1]

    #Re-defines the instance with parameters
    param = util.Parameters(alphap, alphaf, eta, gamma1, gamma2, gamma3, tfp,
                            sigma2theta, rho_theta_epsilon, wagep_betas,
                            marriagep_betas, kidsp_betas, eitc_list, afdc_list,
                            snap_list, cpi, lambdas, kappas, pafdc, psnap, mup)

    #The estimate class
    output_ins = estimate.Estimate(nperiods, param, x_w, x_m, x_k, x_wmk,
                                   passign, agech0, nkids0, married0, D,
                                   dict_grid, M, N, moments_vector, var_cov,
                                   hours_p, hours_f, wr, cs, ws)

    hours = np.zeros(N)
    childcare = np.zeros(N)

    model_orig = util.Utility(param, N, x_w, x_m, x_k, passign, nkids0,
                              married0, hours, childcare, agech0, hours_p,
                              hours_f, wr, cs, ws)

    #Obtaining emax instance: this is fixed throughout the exercise
    emax_instance = output_ins.emax(param, model_orig)

    choices_c = {}
    models = []
    for j in range(2):
        np.save(
            '/mnt/Research/nealresearch/new-hope-secure/newhopemount/results/Model/experiments/NH/shock.npy',
            shocks[j])
        models.append(
            Shock(param, N, x_w, x_m, x_k, passign, nkids0, married0, hours,
                  childcare, agech0, hours_p, hours_f, wr, cs, ws))
        choices_c['Choice_' + str(j)] = output_ins.samples(
            param, emax_instance, models[j])

    #Computing changes in % employment for control group
    h_sim_matrix = []
    employment = []
    wages = []
    full = []
    for j in range(2):
        h_sim_matrix.append(choices_c['Choice_' + str(j)]['hours_matrix'])
        employment.append(choices_c['Choice_' + str(j)]['hours_matrix'] > 0)
        full.append(choices_c['Choice_' + str(j)]['hours_matrix'] == hours_f)
        wages.append(choices_c['Choice_' + str(j)]['wage_matrix'])

    #Extensive margin
    elast_extensive = np.zeros(M)
    for j in range(M):
        elast_periods = np.zeros(nperiods)

        for t in range(nperiods):

            elast_periods[t] = np.mean(
                (employment[1][:, t, j] - employment[0][:, t, j]),
                axis=0) / (shocks[1] * np.mean(
                    (employment[0][:, t, j]), axis=0))

        elast_extensive[j] = np.mean(elast_periods)

    #Intensive margin
    elast_intensive = np.zeros(M)
    for j in range(M):
        elast_periods = np.zeros(nperiods)

        for t in range(nperiods):
            sample = (employment[0][:, t, j] == 1)
            elast_periods[t] = np.mean(
                (h_sim_matrix[1][sample, t, j] -
                 h_sim_matrix[0][sample, t, j]),
                axis=0) / (shocks[1] *
                           np.mean(h_sim_matrix[0][sample, t, j], axis=0))

        elast_intensive[j] = np.mean(elast_periods)

    return {'Extensive': elast_extensive, 'Intensive': elast_intensive}
示例#3
0
nkids0 = x_df[['nkids_baseline']].values

#marital status at baseline
married0 = x_df[['d_marital_2']].values

#age of child at baseline
agech0 = x_df[['age_t0']].values

age_child = np.zeros((N, nperiods))
for t in range(nperiods):
    age_child = agech0 + t

#Defines the instance with parameters
param0 = util.Parameters(alphap, alphaf, mu_c, eta, gamma1, gamma2, gamma3,
                         tfp, sigma2theta, rho_theta_epsilon, wagep_betas,
                         income_male_betas, c_emp_spouse, marriagep_betas,
                         kidsp_betas, eitc_list, afdc_list, snap_list, cpi,
                         fpl_list, lambdas, kappas, pafdc, psnap, mup, sigma_z)

###Auxiliary estimates###
moments_vector = pd.read_csv(
    "/home/jrodriguez/NH_HC/results/model_v2/aux_model/moments_vector.csv"
).values

#This is the var cov matrix of aux estimates
var_cov = pd.read_csv(
    "/home/jrodriguez/NH_HC/results/model_v2/aux_model/var_cov.csv").values

#The vector of aux standard errors
#Using diagonal of Var-Cov matrix of simulated moments
se_vector = np.sqrt(np.diagonal(var_cov))
示例#4
0
#Assuming random start
theta0 = np.exp(np.random.randn(N))

#number of kids at baseline
nkids0 = x_df[['nkids_baseline']].values

#marital status at baseline
married0 = x_df[['d_marital_2']].values

#age of child at baseline
agech0 = x_df[['age_t0']].values

#Defines the instance with parameters
param0 = util.Parameters(alphap, alphaf, eta, alpha_cc, gamma1, gamma2, tfp,
                         sigmatheta, wagep_betas, marriagep_betas, kidsp_betas,
                         eitc_list, afdc_list, snap_list, cpi, q, scalew,
                         shapew, lambdas, kappas, pafdc, psnap)

#For montercarlo integration
D = [5, 10, 15, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100]

#How many hours is part- and full-time work
hours_p = 15
hours_f = 40

hours = np.zeros(N)
childcare = np.zeros(N)
wr, cs, ws = 1, 1, 1

#This is an arbitrary initialization of Utility class
model = util.Utility(param0, N, x_w, x_m, x_k, passign, nkids0, married0,