def plotNormalProbability(vals=None, RISet='', title=None, showstrains=0, specialStrains=[None], size=(750,500)): dataXZ = vals[:] dataXZ.sort(webqtlUtil.cmpOrder) dataLabel = [] dataX = map(lambda X: X[1], dataXZ) showLabel = showstrains if len(dataXZ) > 50: showLabel = 0 for item in dataXZ: strainName = webqtlUtil.genShortStrainName(RISet=RISet, input_strainName=item[0]) dataLabel.append(strainName) dataY=Plot.U(len(dataX)) dataZ=map(Plot.inverseCumul,dataY) c = pid.PILCanvas(size=(750,500)) Plot.plotXY(c, dataZ, dataX, dataLabel = dataLabel, XLabel='Expected Z score', connectdot=0, YLabel='Trait value', title=title, specialCases=specialStrains, showLabel = showLabel) filename= webqtlUtil.genRandStr("nP_") c.save(webqtlConfig.IMGDIR+filename, format='gif') img=HT.Image('/image/'+filename+'.gif',border=0) return img
def plotBoxPlot(vals): valsOnly = [] dataXZ = vals[:] for i in range(len(dataXZ)): valsOnly.append(dataXZ[i][1]) plotHeight = 320 plotWidth = 220 xLeftOffset = 60 xRightOffset = 40 yTopOffset = 40 yBottomOffset = 60 canvasHeight = plotHeight + yTopOffset + yBottomOffset canvasWidth = plotWidth + xLeftOffset + xRightOffset canvas = pid.PILCanvas(size=(canvasWidth,canvasHeight)) XXX = [('', valsOnly[:])] Plot.plotBoxPlot(canvas, XXX, offset=(xLeftOffset, xRightOffset, yTopOffset, yBottomOffset), XLabel= "Trait") filename= webqtlUtil.genRandStr("Box_") canvas.save(webqtlConfig.IMGDIR+filename, format='gif') img=HT.Image('/image/'+filename+'.gif',border=0) plotLink = HT.Span("More about ", HT.Href(text="Box Plots", url="http://davidmlane.com/hyperstat/A37797.html", target="_blank", Class="fs13")) return img, plotLink
def screePlot(self, NNN=0, pearsonEigenValue=None): c1 = pid.PILCanvas(size=(700,500)) Plot.plotXY(canvas=c1, dataX=range(1,NNN+1), dataY=pearsonEigenValue, rank=0, labelColor=pid.blue,plotColor=pid.red, symbolColor=pid.blue, XLabel='Factor Number', connectdot=1,YLabel='Percent of Total Variance %', title='Pearson\'s R Scree Plot') filename= webqtlUtil.genRandStr("Scree_") c1.save(webqtlConfig.IMGDIR+filename, format='gif') img=HT.Image('/image/'+filename+'.gif',border=0) return img
def factorLoadingsPlot(self, pearsonEigenVectors=None, traitList=None): traitname = map(lambda X:str(X.name), traitList) c2 = pid.PILCanvas(size=(700,500)) Plot.plotXY(c2, pearsonEigenVectors[0],pearsonEigenVectors[1], 0, dataLabel = traitname, labelColor=pid.blue, plotColor=pid.red, symbolColor=pid.blue,XLabel='Factor (1)', connectdot=1, YLabel='Factor (2)', title='Factor Loadings Plot (Pearson)', loadingPlot=1) filename= webqtlUtil.genRandStr("FacL_") c2.save(webqtlConfig.IMGDIR+filename, format='gif') img = HT.Image('/image/'+filename+'.gif',border=0) return img
def plotBarGraph(identification='', RISet='', vals=None, type="name"): this_identification = "unnamed trait" if identification: this_identification = identification if type=="rank": dataXZ = vals[:] dataXZ.sort(webqtlUtil.cmpOrder) title='%s' % this_identification else: dataXZ = vals[:] title='%s' % this_identification tvals = [] tnames = [] tvars = [] for i in range(len(dataXZ)): tvals.append(dataXZ[i][1]) tnames.append(webqtlUtil.genShortStrainName(RISet=RISet, input_strainName=dataXZ[i][0])) tvars.append(dataXZ[i][2]) nnStrain = len(tnames) sLabel = 1 ###determine bar width and space width if nnStrain < 20: sw = 4 elif nnStrain < 40: sw = 3 else: sw = 2 ### 700 is the default plot width minus Xoffsets for 40 strains defaultWidth = 650 if nnStrain > 40: defaultWidth += (nnStrain-40)*10 defaultOffset = 100 bw = int(0.5+(defaultWidth - (nnStrain-1.0)*sw)/nnStrain) if bw < 10: bw = 10 plotWidth = (nnStrain-1)*sw + nnStrain*bw + defaultOffset plotHeight = 500 #print [plotWidth, plotHeight, bw, sw, nnStrain] c = pid.PILCanvas(size=(plotWidth,plotHeight)) Plot.plotBarText(c, tvals, tnames, variance=tvars, YLabel='Value', title=title, sLabel = sLabel, barSpace = sw) filename= webqtlUtil.genRandStr("Bar_") c.save(webqtlConfig.IMGDIR+filename, format='gif') img=HT.Image('/image/'+filename+'.gif',border=0) return img
def factorLoadingsPlot(self, pearsonEigenVectors=None, traitList=None): traitname = map(lambda X:str(X.name), traitList) c2 = pid.PILCanvas(size=(700,500)) if type(pearsonEigenVectors[0][0]).__name__ == 'complex': pearsonEigenVectors_0 = self.removeimag_array(values=pearsonEigenVectors[0]) else: pearsonEigenVectors_0 = pearsonEigenVectors[0] if type(pearsonEigenVectors[1][0]).__name__ == 'complex': pearsonEigenVectors_1 = self.removeimag_array(values=pearsonEigenVectors[1]) else: pearsonEigenVectors_1 = pearsonEigenVectors[1] Plot.plotXY(c2, pearsonEigenVectors_0,pearsonEigenVectors_1, 0, dataLabel = traitname, labelColor=pid.blue, plotColor=pid.red, symbolColor=pid.blue,XLabel='Factor (1)', connectdot=1, YLabel='Factor (2)', title='Factor Loadings Plot (Pearson)', loadingPlot=1) filename= webqtlUtil.genRandStr("FacL_") c2.save(webqtlConfig.IMGDIR+filename, format='gif') img = HT.Image('/image/'+filename+'.gif',border=0) return img
def do_outliers(self): values = [sample.value for sample in self.sample_list if sample.value != None] upper_bound, lower_bound = Plot.find_outliers(values) for sample in self.sample_list: if sample.value: if upper_bound and sample.value > upper_bound: sample.outlier = True elif lower_bound and sample.value < lower_bound: sample.outlier = True else: sample.outlier = False
def do_outliers(self): values = [sample.value for sample in self.sample_list if sample.value is not None] upper_bound, lower_bound = Plot.find_outliers(values) for sample in self.sample_list: if sample.value: if upper_bound and sample.value > upper_bound: sample.outlier = True elif lower_bound and sample.value < lower_bound: sample.outlier = True else: sample.outlier = False
def buildCanvas(self, colorScheme='', targetDescriptionChecked='', clusterChecked='', sessionfile='', genotype=None, strainlist=None, ppolar=None, mpolar=None, traitList=None, traitDataList=None, userPrivilege=None, userName=None): labelFont = pid.Font(ttf="tahoma",size=14,bold=0) topHeight = 0 NNN = len(traitList) #XZ: It's necessory to define canvas here canvas = pid.PILCanvas(size=(80+NNN*20,880)) names = map(webqtlTrait.displayName, traitList) #XZ, 7/29/2009: create trait display and find max strWidth strWidth = 0 for j in range(len(names)): thisTrait = traitList[j] if targetDescriptionChecked: if thisTrait.db.type == 'ProbeSet': if thisTrait.probe_target_description: names[j] += ' [%s at Chr %s @ %2.3fMB, %s]' % (thisTrait.symbol, thisTrait.chr, thisTrait.mb, thisTrait.probe_target_description) else: names[j] += ' [%s at Chr %s @ %2.3fMB]' % (thisTrait.symbol, thisTrait.chr, thisTrait.mb) elif thisTrait.db.type == 'Geno': names[j] += ' [Chr %s @ %2.3fMB]' % (thisTrait.chr, thisTrait.mb) elif thisTrait.db.type == 'Publish': if thisTrait.confidential: if webqtlUtil.hasAccessToConfidentialPhenotypeTrait(privilege=userPrivilege, userName=userName, authorized_users=thisTrait.authorized_users): if thisTrait.post_publication_abbreviation: names[j] += ' [%s]' % (thisTrait.post_publication_abbreviation) else: if thisTrait.pre_publication_abbreviation: names[j] += ' [%s]' % (thisTrait.pre_publication_abbreviation) else: if thisTrait.post_publication_abbreviation: names[j] += ' [%s]' % (thisTrait.post_publication_abbreviation) else: pass i = canvas.stringWidth(names[j], font=labelFont) if i > strWidth: strWidth = i width = NNN*20 xoffset = 40 yoffset = 40 cellHeight = 3 nLoci = reduce(lambda x,y: x+y, map(lambda x: len(x),genotype),0) if nLoci > 2000: cellHeight = 1 elif nLoci > 1000: cellHeight = 2 elif nLoci < 200: cellHeight = 10 else: pass pos = range(NNN) neworder = [] BWs = Plot.BWSpectrum() colors100 = Plot.colorSpectrum() colors = Plot.colorSpectrum(130) finecolors = Plot.colorSpectrum(250) colors100.reverse() colors.reverse() finecolors.reverse() scaleFont=pid.Font(ttf="tahoma",size=10,bold=0) if not clusterChecked: #XZ: this part is for original order for i in range(len(names)): neworder.append((xoffset+20*(i+1), i)) canvas = pid.PILCanvas(size=(80+NNN*20+240,80+ topHeight +5+5+strWidth+nLoci*cellHeight+80+20*cellHeight)) self.drawTraitNameBottom(canvas,names,yoffset,neworder,strWidth,topHeight,labelFont) else: #XZ: this part is to cluster traits topHeight = 400 canvas = pid.PILCanvas(size=(80+NNN*20+240,80+ topHeight +5+5+strWidth+nLoci*cellHeight+80+20*cellHeight)) corArray = [([0] * (NNN))[:] for i in range(NNN)] nnCorr = len(strainlist) #XZ, 08/04/2009: I commented out pearsonArray, spearmanArray for i, thisTrait in enumerate(traitList): names1 = [thisTrait.db.name, thisTrait.name, thisTrait.cellid] for j, thisTrait2 in enumerate(traitList): names2 = [thisTrait2.db.name, thisTrait2.name, thisTrait2.cellid] if j < i: corr,nOverlap = webqtlUtil.calCorrelation(traitDataList[i], traitDataList[j],nnCorr) if (1-corr) < 0: distance = 0.0 else: distance = 1-corr corArray[i][j] = distance corArray[j][i] = distance elif j == i: corArray[i][j] = 0.0 else: pass #XZ, 7/29/2009: The parameter d has info of cluster (group member and distance). The format of d is tricky. Print it out to see it's format. d = slink.slink(corArray) #XZ, 7/29/2009: Attention: The 'neworder' is changed by the 'draw' function #XZ, 7/30/2009: Only toppos[1][0] and top[1][1] are used later. Then what toppos[0] is used for? toppos = self.draw(canvas,names,d,xoffset,yoffset,neworder,topHeight) self.drawTraitNameTop(canvas,names,yoffset,neworder,strWidth,topHeight,labelFont) #XZ, 7/29/2009: draw the top vertical line canvas.drawLine(toppos[1][0],toppos[1][1],toppos[1][0],yoffset) #XZ: draw string 'distance = 1-r' canvas.drawString('distance = 1-r',neworder[-1][0] + 50, topHeight*3/4,font=labelFont,angle=90) #draw Scale scaleFont=pid.Font(ttf="tahoma",size=10,bold=0) x = neworder[-1][0] canvas.drawLine(x+5, topHeight+yoffset, x+5, yoffset, color=pid.black) y = 0 while y <=2: canvas.drawLine(x+5, topHeight*y/2.0+yoffset, x+10, topHeight*y/2.0+yoffset) canvas.drawString('%2.1f' % (2-y), x+12, topHeight*y/2.0+yoffset, font=scaleFont) y += 0.5 chrname = 0 chrnameFont=pid.Font(ttf="tahoma",size=24,bold=0) Ncol = 0 nearestMarkers = self.getNearestMarker(traitList, genotype) # import cPickle if sessionfile: fp = open(os.path.join(webqtlConfig.TMPDIR, sessionfile + '.session'), 'rb') permData = cPickle.load(fp) fp.close() else: permData = {} areas = [] #XZ, 7/31/2009: This for loop is to generate the heatmap #XZ: draw trait by trait instead of marker by marker for order in neworder: #startHeight = 40+400+5+5+strWidth startHeight = topHeight + 40+5+5+strWidth startWidth = order[0]-5 if Ncol and Ncol % 5 == 0: drawStartPixel = 8 else: drawStartPixel = 9 tempVal = traitDataList[order[1]] _vals = [] _strains = [] for i in range(len(strainlist)): if tempVal[i] != None: _strains.append(strainlist[i]) _vals.append(tempVal[i]) qtlresult = genotype.regression(strains = _strains, trait = _vals) if sessionfile: LRSArray = permData[str(traitList[order[1]])] else: LRSArray = genotype.permutation(strains = _strains, trait = _vals, nperm = 1000) permData[str(traitList[order[1]])] = LRSArray sugLRS = LRSArray[369] sigLRS = LRSArray[949] prechr = 0 chrstart = 0 nearest = nearestMarkers[order[1]] midpoint = [] for item in qtlresult: if item.lrs > webqtlConfig.MAXLRS: adjustlrs = webqtlConfig.MAXLRS else: adjustlrs = item.lrs if item.locus.chr != prechr: if prechr: canvas.drawRect(startWidth-drawStartPixel, startHeight, startWidth+10, startHeight+3,edgeColor=pid.white, edgeWidth=0, fillColor=pid.white) startHeight+= 3 if not chrname: canvas.drawString(prechr,xoffset-20,(chrstart+startHeight)/2,font = chrnameFont,color=pid.dimgray) prechr = item.locus.chr chrstart = startHeight if colorScheme == '0': if adjustlrs <= sugLRS: colorIndex = int(65*adjustlrs/sugLRS) else: colorIndex = int(65 + 35*(adjustlrs-sugLRS)/(sigLRS-sugLRS)) if colorIndex > 99: colorIndex = 99 colorIndex = colors100[colorIndex] elif colorScheme == '1': sugLRS = LRSArray[369]/2.0 if adjustlrs <= sugLRS: colorIndex = BWs[20+int(50*adjustlrs/sugLRS)] else: if item.additive > 0: colorIndex = int(80 + 50*(adjustlrs-sugLRS)/(sigLRS-sugLRS)) else: colorIndex = int(50 - 50*(adjustlrs-sugLRS)/(sigLRS-sugLRS)) if colorIndex > 129: colorIndex = 129 if colorIndex < 0: colorIndex = 0 colorIndex = colors[colorIndex] elif colorScheme == '2': if item.additive > 0: colorIndex = int(150 + 100*(adjustlrs/sigLRS)) else: colorIndex = int(100 - 100*(adjustlrs/sigLRS)) if colorIndex > 249: colorIndex = 249 if colorIndex < 0: colorIndex = 0 colorIndex = finecolors[colorIndex] else: colorIndex = pid.white if startHeight > 1: canvas.drawRect(startWidth-drawStartPixel, startHeight, startWidth+10, startHeight+cellHeight,edgeColor=colorIndex, edgeWidth=0, fillColor=colorIndex) else: canvas.drawLine(startWidth-drawStartPixel, startHeight, startWidth+10, startHeight, Color=colorIndex) if item.locus.name == nearest: midpoint = [startWidth,startHeight-5] startHeight+=cellHeight #XZ, map link to trait name and band COORDS = "%d,%d,%d,%d" %(startWidth-drawStartPixel,topHeight+40,startWidth+10,startHeight) HREF = "javascript:showDatabase2('%s','%s','%s');" % (traitList[order[1]].db.name, traitList[order[1]].name, traitList[order[1]].cellid) area = (COORDS, HREF, '%s' % names[order[1]]) areas.append(area) if midpoint: traitPixel = ((midpoint[0],midpoint[1]),(midpoint[0]-6,midpoint[1]+12),(midpoint[0]+6,midpoint[1]+12)) canvas.drawPolygon(traitPixel,edgeColor=pid.black,fillColor=pid.orange,closed=1) if not chrname: canvas.drawString(prechr,xoffset-20,(chrstart+startHeight)/2,font = chrnameFont,color=pid.dimgray) chrname = 1 Ncol += 1 #draw Spectrum startSpect = neworder[-1][0] + 30 startHeight = topHeight + 40+5+5+strWidth if colorScheme == '0': for i in range(100): canvas.drawLine(startSpect+i,startHeight+20,startSpect+i,startHeight+40,color=colors100[i]) scaleFont=pid.Font(ttf="tahoma",size=10,bold=0) canvas.drawLine(startSpect,startHeight+45,startSpect,startHeight+39,color=pid.black) canvas.drawString('LRS = 0',startSpect,startHeight+55,font=scaleFont) canvas.drawLine(startSpect+64,startHeight+45,startSpect+64,startHeight+39,color=pid.black) canvas.drawString('Suggestive LRS',startSpect+64,startHeight+55,font=scaleFont) canvas.drawLine(startSpect+99,startHeight+45,startSpect+99,startHeight+39,color=pid.black) canvas.drawString('Significant LRS',startSpect+105,startHeight+40,font=scaleFont) elif colorScheme == '1': for i in range(50): canvas.drawLine(startSpect+i,startHeight,startSpect+i,startHeight+40,color=BWs[20+i]) for i in range(50,100): canvas.drawLine(startSpect+i,startHeight,startSpect+i,startHeight+20,color=colors[100-i]) canvas.drawLine(startSpect+i,startHeight+20,startSpect+i,startHeight+40,color=colors[30+i]) canvas.drawLine(startSpect,startHeight+45,startSpect,startHeight+39,color=pid.black) canvas.drawString('LRS = 0',startSpect,startHeight+60,font=scaleFont) canvas.drawLine(startSpect+50,startHeight+45,startSpect+50,startHeight+39,color=pid.black) canvas.drawString('0.5*Suggestive LRS',startSpect+50,startHeight+ 60,font=scaleFont) canvas.drawLine(startSpect+99,startHeight+45,startSpect+99,startHeight+39,color=pid.black) canvas.drawString('Significant LRS',startSpect+105,startHeight+50,font=scaleFont) textFont=pid.Font(ttf="verdana",size=18,bold=0) canvas.drawString('%s +' % ppolar,startSpect+120,startHeight+ 35,font=textFont,color=pid.red) canvas.drawString('%s +' % mpolar,startSpect+120,startHeight+ 15,font=textFont,color=pid.blue) elif colorScheme == '2': for i in range(100): canvas.drawLine(startSpect+i,startHeight,startSpect+i,startHeight+20,color=finecolors[100-i]) canvas.drawLine(startSpect+i,startHeight+20,startSpect+i,startHeight+40,color=finecolors[150+i]) canvas.drawLine(startSpect,startHeight+45,startSpect,startHeight+39,color=pid.black) canvas.drawString('LRS = 0',startSpect,startHeight+60,font=scaleFont) canvas.drawLine(startSpect+99,startHeight+45,startSpect+99,startHeight+39,color=pid.black) canvas.drawString('Significant LRS',startSpect+105,startHeight+50,font=scaleFont) textFont=pid.Font(ttf="verdana",size=18,bold=0) canvas.drawString('%s +' % ppolar,startSpect+120,startHeight+ 35,font=textFont,color=pid.red) canvas.drawString('%s +' % mpolar,startSpect+120,startHeight+ 15,font=textFont,color=pid.blue) filename= webqtlUtil.genRandStr("Heatmap_") canvas.save(webqtlConfig.IMGDIR+filename, format='png') if not sessionfile: sessionfile = webqtlUtil.generate_session() webqtlUtil.dump_session(permData, os.path.join(webqtlConfig.TMPDIR, sessionfile +'.session')) self.filename=filename self.areas=areas self.sessionfile=sessionfile
def drawGraph(self, canvas, data, cLength = 2500, offset= (80, 160, 60, 60), XLabel="QTL location (GMb)", YLabel="Gene location (GMb)"): xLeftOffset, xRightOffset, yTopOffset, yBottomOffset = offset plotWidth = canvas.size[0] - xLeftOffset - xRightOffset plotHeight = canvas.size[1] - yTopOffset - yBottomOffset #draw Frame canvas.drawRect(plotWidth+xLeftOffset, plotHeight + yTopOffset, xLeftOffset, yTopOffset) #draw Scale i = 100 scaleFont=pid.Font(ttf="cour",size=11,bold=1) while i < cLength: yCoord = plotHeight + yTopOffset - plotHeight*i/cLength canvas.drawLine(xLeftOffset,yCoord ,xLeftOffset-5, yCoord) canvas.drawString("%d"% i, xLeftOffset -40, yCoord +5,font=scaleFont) xCoord = xLeftOffset + plotWidth*i/cLength canvas.drawLine(xCoord, plotHeight + yTopOffset ,xCoord, plotHeight + yTopOffset+5) canvas.drawString("%d"% i, xCoord -10, plotHeight + yTopOffset+15,font=scaleFont) i += 100 #draw Points finecolors = Plot.colorSpectrum(300) finecolors.reverse() for item in data: _pvalue = item[-1] try: _idx = int((-math.log10(_pvalue))*300/6.0) # XZ, 09/11/2008: add module name _color = finecolors[_idx] except: _color = finecolors[-1] canvas.drawCross(xLeftOffset + plotWidth*item[0]/cLength, plotHeight + yTopOffset - plotHeight*item[1]/cLength, color=_color,size=3) #draw grid / always draw grid if 1: #self.grid == "on": for key in self.mouseChrLengthDict.keys(): length = self.mouseChrLengthDict[key] if length != 0: yCoord = plotHeight + yTopOffset - plotHeight*length/cLength canvas.drawLine(xLeftOffset,yCoord ,xLeftOffset+plotWidth, yCoord, color=pid.lightgrey) xCoord = xLeftOffset + plotWidth*length/cLength canvas.drawLine(xCoord, plotHeight + yTopOffset ,xCoord, yTopOffset, color=pid.lightgrey) #draw spectrum i = 0 j = 0 middleoffsetX = 40 labelFont=pid.Font(ttf="tahoma",size=12,bold=0) for dcolor in finecolors: canvas.drawLine(xLeftOffset+ plotWidth + middleoffsetX -15 , plotHeight + yTopOffset - i, \ xLeftOffset+ plotWidth + middleoffsetX+15 , plotHeight + yTopOffset - i, color=dcolor) if i % 50 == 0: canvas.drawLine(xLeftOffset+ plotWidth +middleoffsetX+15 ,plotHeight + yTopOffset - i, \ xLeftOffset+ plotWidth +middleoffsetX+20,plotHeight + yTopOffset - i, color=pid.black) canvas.drawString("%1.1f" % -j , xLeftOffset+ plotWidth +middleoffsetX+25 ,plotHeight + yTopOffset - i+5, font = labelFont) j += 1 i += 1 canvas.drawLine(xLeftOffset+ plotWidth +middleoffsetX+15 ,plotHeight + yTopOffset - i+1, \ xLeftOffset+ plotWidth +middleoffsetX+20,plotHeight + yTopOffset - i+1, color=pid.black) canvas.drawString("%1.1f" % -j , xLeftOffset+ plotWidth +middleoffsetX+25 ,plotHeight + yTopOffset - i+6, font = labelFont) labelFont=pid.Font(ttf="tahoma",size=14,bold=1) canvas.drawString("Log(pValue)" , xLeftOffset+ plotWidth +middleoffsetX+60 ,plotHeight + yTopOffset - 100, font = labelFont, angle =90) labelFont=pid.Font(ttf="verdana",size=18,bold=0) canvas.drawString(XLabel, xLeftOffset + (plotWidth -canvas.stringWidth(XLabel,font=labelFont))/2.0, plotHeight + yTopOffset +40, color=pid.blue, font=labelFont) canvas.drawString(YLabel,xLeftOffset-60, plotHeight + yTopOffset-(plotHeight -canvas.stringWidth(YLabel,font=labelFont))/2.0, color=pid.blue, font=labelFont, angle =90) return
def drawSVG(self, data, cLength = 2500, offset= (80, 160, 60, 60), size=(1280,880), XLabel="Marker GMb", YLabel="Transcript GMb"): entities = { "colorText" : "fill:darkblue;", "strokeText" : ";stroke:none;stroke-width:0;", "allText" : "font-family:Helvetica;", "titleText" : "font-size:22;font-weight:bold;", "subtitleText" : "font-size:18;font-weight:bold;", "headlineText" : "font-size:14;font-weight:bold;", "normalText" : "font-size:12;", "legendText" : "font-size:11;text-anchor:end;", "valuesText" : "font-size:12;", "boldValuesText" : "font-size:12;font-weight:bold;", "smallText" : "font-size:10;", "vText" : "writing-mode:tb-rl", "rightText" : "text-anchor:end;", "middleText" : "text-anchor:middle;", "bezgrenzstyle" : "fill:none;stroke:#11A0FF;stroke-width:40;stroke-antialiasing:true;", "rectstyle" : "fill:lightblue;stroke:none;opacity:0.2;", "fillUnbebaut" : "fill:#CCFFD4;stroke:none;", "fillNodata" : "fill:#E7E7E7;stroke:black;stroke-width:2;stroke-antialiasing:true;", "fillNodataLegend" : "fill:#E7E7E7;stroke:black;stroke-width:0.5;stroke-antialiasing:true;", "grundzeitstyle" : "fill:none;stroke:#E00004;stroke-width:60;stroke-antialiasing:true;", "bezgrenzstyle" : "fill:none;stroke:#11A0FF;stroke-width:40;stroke-antialiasing:true;", "mapAuthor" : "A. Neumann", } cWidth, cHeight = size canvasSVG = svg.drawing(entities) #create a drawing drawSpace=svg.svg((0, 0, cWidth, cHeight), cWidth, cHeight, xml__space="preserve", zoomAndPan="disable", onload="initMap(evt);", xmlns__a3="http://ns.adobe.com/AdobeSVGViewerExtensions/3.0/", a3__scriptImplementation="Adobe") #create a svg drawingspace canvasds=svg.description('Genome Graph') #define a description drawSpace.addElement(canvasds) #add the description to the svg #need to be modified or deleted xLeftOffset, xRightOffset, yTopOffset, yBottomOffset = offset plotWidth = cWidth - xLeftOffset - xRightOffset plotHeight = cHeight - yTopOffset - yBottomOffset drawSpace.addElement(svg.script("", language="javascript", xlink__href="/javascript/svg.js")) #add defs defs = svg.defs() symbol1= svg.symbol(id="magnifyer", overflow="visible", style="fill:white;stroke:orange;stroke-width:2;") symbol1.addElement(svg.line(0, 0, -8, 20)) symbol1.addElement(svg.circle(0, 0, 8)) symbol1.addElement(svg.line(-4, 0, 4, 0, style="stroke:orange;stroke-width:2;")) defs.addElement(symbol1) symbol2= svg.symbol(id="magnifyerZoomIn",overflow="visible") symbol2.addElement(svg.use(link="#magnifyer", id="zoomIn")) symbol2.addElement(svg.line(0, -4, 0, 4, style="stroke:orange;stroke-width:2;")) defs.addElement(symbol2) drawSpace.addElement(defs) symbol3= svg.symbol(id="msgbox", overflow="visible", style="fill:white;stroke:orange;stroke-width:1;opacity:0.8;") symbol3.addElement(svg.rect(-80, -190, 300, 150, rx=10, ry=10)) symbol3.addElement(svg.line(21, -40, 58, -40, style="stroke:white;")) symbol3.addElement(svg.polyline([[20, -40], [0, 0], [60, -40]])) symbol3.addElement(svg.text(-60, -160, "ProbeSet ", style="&colorText; &allText; &subtitleText; &strokeText;")) symbol3.addElement(svg.text(-60, -125, "Marker ", style="&colorText; &allText; &subtitleText; &strokeText;")) symbol3.addElement(svg.text(-60, -90, "LRS ", style="&colorText; &allText; &subtitleText; &strokeText;")) symbol3.addElement(svg.text(-60, -55, "P value ", style="&colorText; &allText; &subtitleText; &strokeText;")) defs.addElement(symbol3) g = svg.group("title") g.addElement(svg.text(cWidth-40, 30, "Genome Graph", style="&colorText; &allText; &titleText; &rightText;")) g.addElement(svg.text(cWidth-40, 50, "Whole Transcriptome Mapping", style="&colorText; &allText; &subtitleText; &rightText;")) drawSpace.addElement(g) #draw Main display area border mainSquare = cHeight-60 cordZOOM = 10 drawSpace.addElement(svg.rect(8, 8, mainSquare+4, mainSquare+4,'none',"orange",0.5, rx="5", ry="5")) drawSpace.addElement(svg.text(10+mainSquare/2, 40+mainSquare,'Marker GMb', style="&colorText; &allText; &titleText; &middleText;", id="XLabel")) drawSpace.addElement(svg.text(mainSquare + 80, 10+mainSquare/2,'Transcript GMb', style="&colorText; &allText; &titleText; &middleText; &vText;", id="YLabel")) #draw overview display area drawSpace.addElement(svg.rect(cWidth-40-260, 60, 260, 260,'none',"orange",0.5, rx="5", ry="5")) drawSpaceThumb= svg.svg(id="overviewPlot",x=cWidth-40-260,y="60",width="260", height="260",viewBox=(0, 0, mainSquare*cordZOOM, mainSquare*cordZOOM)) g = svg.group(style="&bezgrenzstyle;") g.addElement(svg.use("#grid")) drawSpaceThumb.addElement(g) drawSpaceThumb.addElement(svg.rect(id="overviewRect",style="&rectstyle;", x="0",y="0",width=mainSquare*cordZOOM,height=mainSquare*cordZOOM, onmouseover="statusChange('click and drag rectangle to change extent');", onmousedown="beginPan(evt);", onmousemove="doPan(evt);", onmouseup="endPan();", onmouseout="endPan();")) drawSpace.addElement(drawSpaceThumb) #draw navigator g = svg.group(id="navigatorElements") g.addElement(svg.use("#magnifyerZoomIn", id="zoomIn", transform="translate(%d,350)" % (cWidth-40-130-20), onmouseover="magnify(evt,1.3,'in');", onmouseout="magnify(evt,1,'in');", onclick="zoomIt('in');")) g.addElement(svg.use("#magnifyer", id="zoomOut", transform="translate(%d,350)" % (cWidth-40-130+20), onmouseover="magnify(evt,1.3,'out');",onmouseout="magnify(evt,1,'out');", onclick="zoomIt('out');")) drawSpace.addElement(g) g = svg.group(id="statusBar") g.addElement(svg.text(cWidth-40-260, 360, "ZOOM: 100%", style="fill:orange; font-size:14;", id="zoomValueObj")) g.addElement(svg.text(cWidth-40-260, 380, "Status:", style="&colorText; &allText; &smallText;")) g.addElement(svg.text(cWidth-40-260, 395, "Loading Plot", style="&colorText; &allText; &smallText;", id="statusText")) drawSpace.addElement(g) #draw main display area drawSpaceMain= svg.svg((0, 0, mainSquare*cordZOOM, mainSquare*cordZOOM), mainSquare, mainSquare, id="mainPlot",x="10",y="10") mPlotWidth = mPlotHeight = 0.8*mainSquare*cordZOOM drawSpaceMain.addElement(svg.rect(mainSquare*cordZOOM*0.1, mainSquare*cordZOOM*0.1, mPlotWidth, mPlotHeight,style="fill:white", onmousemove="showChr(evt);", onmouseover="showChr(evt);", onmouseout="showNoChr(evt);")) #draw grid g = svg.group("grid", style="stroke:lightblue;stroke-width:3", transform="translate(%d,%d)" % (mainSquare*cordZOOM*0.1, mainSquare*cordZOOM*0.1)) if 1: #self.grid == "on": js = [] for key in self.mouseChrLengthDict.keys(): length = self.mouseChrLengthDict[key] js.append(mPlotWidth*length/cLength) if length != 0: yCoord = mPlotHeight*(1.0-length/cLength) l = svg.line(0,yCoord ,mPlotWidth, yCoord) g.addElement(l) xCoord = mPlotWidth*length/cLength l = svg.line(xCoord, 0 ,xCoord, mPlotHeight) g.addElement(l) js.sort() drawSpace.addElement(svg.script("",language="javascript", cdata="var openURL=\"%s\";\nvar chrLength=%s;\n" % (self.openURL, js))) g.addElement(svg.rect(0, 0, mPlotWidth, mPlotHeight,'none','black',10)) drawSpaceMain.addElement(g) #draw Scale g = svg.group("scale", style="stroke:black;stroke-width:0", transform="translate(%d,%d)" % (mainSquare*cordZOOM*0.1, mainSquare*cordZOOM*0.1)) i = 100 scaleFontSize = 11*cordZOOM while i < cLength: yCoord = mPlotHeight - mPlotHeight*i/cLength l = svg.line(0,yCoord ,-5*cordZOOM, yCoord) g.addElement(l) t = svg.text(-40*cordZOOM, yCoord +5*cordZOOM, "%d"% i, 100, "verdana") # coordinate tag Y g.addElement(t) xCoord = mPlotWidth*i/cLength l = svg.line(xCoord, mPlotHeight, xCoord, mPlotHeight+5*cordZOOM) g.addElement(l) if i%200 == 0: t = svg.text(xCoord, mPlotHeight+10*cordZOOM, "%d"% i, 100, "verdana") # coordinate tag X g.addElement(t) i += 100 drawSpaceMain.addElement(g) #draw Points finecolors = Plot.colorSpectrumSVG(12) finecolors.reverse() g = preColor = "" for item in data: _probeset, _chr, _Mb, _marker, _pvalue = item[2:] try: _idx = int((-math.log10(_pvalue))*12/6.0) # add module name _color = finecolors[_idx] except: _color = finecolors[-1] if _color != preColor: preColor = _color if g: drawSpaceMain.addElement(g) g = svg.group("points", style="stroke:%s;stroke-width:5" % _color, transform="translate(%d,%d)" % (mainSquare*cordZOOM*0.1, mainSquare*cordZOOM*0.1), onmouseover="mvMsgBox(evt);", onmouseout="hdMsgBox();", onmousedown="openPage(evt);") else: pass px = mPlotWidth*item[0]/cLength py = mPlotHeight*(1.0-item[1]/cLength) l = svg.line("%2.1f" % (px-3*cordZOOM), "%2.1f" % py, "%2.1f" % (px+3*cordZOOM), "%2.1f" % py, ps=_probeset, mk=_marker) g.addElement(l) drawSpaceMain.addElement(g) """ #draw spectrum i = 0 j = 0 middleoffsetX = 40 labelFont=pid.Font(ttf="tahoma",size=12,bold=0) for dcolor in finecolors: drawSpace.drawLine(xLeftOffset+ plotWidth + middleoffsetX -15 , plotHeight + yTopOffset - i, \ xLeftOffset+ plotWidth + middleoffsetX+15 , plotHeight + yTopOffset - i, color=dcolor) if i % 50 == 0: drawSpace.drawLine(xLeftOffset+ plotWidth +middleoffsetX+15 ,plotHeight + yTopOffset - i, \ xLeftOffset+ plotWidth +middleoffsetX+20,plotHeight + yTopOffset - i, color=pid.black) drawSpace.drawString("%1.1f" % -j , xLeftOffset+ plotWidth +middleoffsetX+25 ,plotHeight + yTopOffset - i+5, font = labelFont) j += 1 i += 1 drawSpace.drawLine(xLeftOffset+ plotWidth +middleoffsetX+15 ,plotHeight + yTopOffset - i+1, \ xLeftOffset+ plotWidth +middleoffsetX+20,plotHeight + yTopOffset - i+1, color=pid.black) drawSpace.drawString("%1.1f" % -j , xLeftOffset+ plotWidth +middleoffsetX+25 ,plotHeight + yTopOffset - i+6, font = labelFont) labelFont=pid.Font(ttf="tahoma",size=14,bold=1) drawSpace.drawString("Log(pValue)" , xLeftOffset+ plotWidth +middleoffsetX+60 ,plotHeight + yTopOffset - 100, font = labelFont, angle =90) labelFont=pid.Font(ttf="verdana",size=18,bold=0) drawSpace.drawString(XLabel, xLeftOffset + (plotWidth -drawSpace.stringWidth(XLabel,font=labelFont))/2.0, plotHeight + yTopOffset +40, color=pid.blue, font=labelFont) drawSpace.drawString(YLabel,xLeftOffset-60, plotHeight + yTopOffset-(plotHeight -drawSpace.stringWidth(YLabel,font=labelFont))/2.0, color=pid.blue, font=labelFont, angle =90) """ drawSpace.addElement(drawSpaceMain) g= svg.group(id="dispBox", overflow="visible", style="fill:white;stroke:orange;stroke-width:1;opacity:0.85;", transform="translate(%d,650)" % (cWidth-40-300), visibility="hidden") g.addElement(svg.rect(-80, -190, 300, 150, rx=10, ry=10)) g.addElement(svg.line(21, -40, 58, -40, style="stroke:white;")) g.addElement(svg.polyline([[20, -40], [0, 0], [60, -40]])) g.addElement(svg.text(-60, -160, "ProbeSet ", style="&colorText; &allText; &subtitleText; &strokeText;", id="_probeset")) g.addElement(svg.text(-60, -125, "Marker ", style="&colorText; &allText; &subtitleText; &strokeText;", id="_marker")) drawSpace.addElement(g) canvasSVG.setSVG(drawSpace) #set the svg of the drawing to the svg return canvasSVG
def __init__(self, fd): templatePage.__init__(self, fd) self.initializeDisplayParameters(fd) if not fd.genotype: fd.readGenotype() mdpchoice = None strainlist = fd.strainlist fd.readData() if not self.openMysql(): return isSampleCorr = 1 isTissueCorr = 0 TD_LR = HT.TD(colspan=2, height=200, width="100%", bgColor="#eeeeee", align="left", wrap="off") dataX = [] dataY = [] dataZ = [] # shortname fullTissueName = [] xlabel = "" ylabel = "" if isSampleCorr: plotHeading = HT.Paragraph("Sample Correlation Scatterplot") plotHeading.__setattr__("class", "title") # XZ: retrieve trait 1 info, Y axis trait1_data = [] # trait 1 data trait1Url = "" try: Trait1 = webqtlTrait(db=self.database, name=self.ProbeSetID, cellid=self.CellID, cursor=self.cursor) Trait1.retrieveInfo() Trait1.retrieveData() except: heading = "Retrieve Data" detail = ["The database you just requested has not been established yet."] self.error(heading=heading, detail=detail) return trait1_data = Trait1.exportData(strainlist) trait1Url = Trait1.genHTML(dispFromDatabase=1) ylabel = "%s : %s" % (Trait1.db.shortname, Trait1.name) if Trait1.cellid: ylabel += " : " + Trait1.cellid # XZ, retrieve trait 2 info, X axis trait2_data = [] # trait 2 data trait2Url = "" try: Trait2 = webqtlTrait(db=self.database2, name=self.ProbeSetID2, cellid=self.CellID2, cursor=self.cursor) Trait2.retrieveInfo() Trait2.retrieveData() except: heading = "Retrieve Data" detail = ["The database you just requested has not been established yet."] self.error(heading=heading, detail=detail) return trait2_data = Trait2.exportData(strainlist) trait2Url = Trait2.genHTML(dispFromDatabase=1) xlabel = "%s : %s" % (Trait2.db.shortname, Trait2.name) if Trait2.cellid: xlabel += " : " + Trait2.cellid for strain in Trait1.data.keys(): if Trait2.data.has_key(strain): dataX.append(Trait2.data[strain].val) dataY.append(Trait1.data[strain].val) if self.showstrains: dataZ.append(webqtlUtil.genShortStrainName(RISet=fd.RISet, input_strainName=strain)) # XZ: We have gotten all data for both traits. if len(dataX) >= self.corrMinInformative: if self.rankOrder == 0: rankPrimary = 0 rankSecondary = 1 else: rankPrimary = 1 rankSecondary = 0 lineColor = self.setLineColor() symbolColor = self.setSymbolColor() idColor = self.setIdColor() c = pid.PILCanvas(size=(self.plotSize, self.plotSize * 0.90)) data_coordinate = Plot.plotXY( canvas=c, dataX=dataX, dataY=dataY, rank=rankPrimary, dataLabel=dataZ, labelColor=pid.black, lineSize=self.lineSize, lineColor=lineColor, idColor=idColor, idFont=self.idFont, idSize=self.idSize, symbolColor=symbolColor, symbolType=self.symbol, filled=self.filled, symbolSize=self.symbolSize, XLabel=xlabel, connectdot=0, YLabel=ylabel, title="", fitcurve=self.showline, displayR=1, offset=(90, self.plotSize / 20, self.plotSize / 10, 90), showLabel=self.showIdentifiers, ) if rankPrimary == 1: dataXlabel, dataYlabel = webqtlUtil.calRank(xVals=dataX, yVals=dataY, N=len(dataX)) else: dataXlabel, dataYlabel = dataX, dataY gifmap1 = HT.Map(name="CorrelationPlotImageMap1") for i, item in enumerate(data_coordinate): one_rect_coordinate = "%d, %d, %d, %d" % (item[0] - 5, item[1] - 5, item[0] + 5, item[1] + 5) if isTissueCorr: one_rect_title = "%s (%s, %s)" % (fullTissueName[i], dataXlabel[i], dataYlabel[i]) else: one_rect_title = "%s (%s, %s)" % (dataZ[i], dataXlabel[i], dataYlabel[i]) gifmap1.areas.append(HT.Area(shape="rect", coords=one_rect_coordinate, title=one_rect_title)) filename = webqtlUtil.genRandStr("XY_") c.save(webqtlConfig.IMGDIR + filename, format="gif") img1 = HT.Image("/image/" + filename + ".gif", border=0, usemap="#CorrelationPlotImageMap1") mainForm_1 = HT.Form( cgi=os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), enctype="multipart/form-data", name="showDatabase", submit=HT.Input(type="hidden"), ) hddn = { "FormID": "showDatabase", "ProbeSetID": "_", "database": "_", "CellID": "_", "RISet": fd.RISet, "ProbeSetID2": "_", "database2": "_", "CellID2": "_", "allstrainlist": string.join(fd.strainlist, " "), "traitList": fd.formdata.getvalue("traitList"), } if fd.incparentsf1: hddn["incparentsf1"] = "ON" for key in hddn.keys(): mainForm_1.append(HT.Input(name=key, value=hddn[key], type="hidden")) if isSampleCorr: mainForm_1.append( HT.P(), HT.Blockquote( HT.Strong("X axis:"), HT.Blockquote(trait2Url), HT.Strong("Y axis:"), HT.Blockquote(trait1Url), style="width: %spx;" % self.plotSize, wrap="hard", ), ) graphForm = HT.Form( cgi=os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), name="MDP_Form", submit=HT.Input(type="hidden"), ) graph_hddn = self.setHiddenParameters(fd, rankPrimary) webqtlUtil.exportData( graph_hddn, fd.allTraitData ) # XZ: This is necessary to replot with different groups of strains for key in graph_hddn.keys(): graphForm.append(HT.Input(name=key, value=graph_hddn[key], type="hidden")) options = self.createOptionsMenu(fd, mdpchoice) if self.showOptions == "0": showOptionsButton = HT.Input( type="button", name="optionsButton", value="Hide Options", onClick="showHideOptions();", Class="button", ) else: showOptionsButton = HT.Input( type="button", name="optionsButton", value="Show Options", onClick="showHideOptions();", Class="button", ) # updated by NL: 12-07-2011 add variables for tissue abbreviation page if isTissueCorr: graphForm.append(HT.Input(name="shortTissueName", value="", type="hidden")) graphForm.append(HT.Input(name="fullTissueName", value="", type="hidden")) shortTissueNameStr = string.join(dataZ, ",") fullTissueNameStr = string.join(fullTissueName, ",") tissueAbbrButton = HT.Input( type="button", name="tissueAbbrButton", value="Show Abbreviations", onClick="showTissueAbbr('MDP_Form','%s','%s')" % (shortTissueNameStr, fullTissueNameStr), Class="button", ) graphForm.append(showOptionsButton, " ", tissueAbbrButton, HT.BR(), HT.BR()) else: graphForm.append(showOptionsButton, HT.BR(), HT.BR()) graphForm.append(options, HT.BR()) graphForm.append(HT.HR(), HT.BR(), HT.P()) TD_LR.append(plotHeading, HT.BR(), graphForm, HT.BR(), gifmap1, HT.P(), img1, HT.P(), mainForm_1) TD_LR.append(HT.BR(), HT.HR(color="grey", size=5, width="100%")) c = pid.PILCanvas(size=(self.plotSize, self.plotSize * 0.90)) data_coordinate = Plot.plotXY( canvas=c, dataX=dataX, dataY=dataY, rank=rankSecondary, dataLabel=dataZ, labelColor=pid.black, lineColor=lineColor, lineSize=self.lineSize, idColor=idColor, idFont=self.idFont, idSize=self.idSize, symbolColor=symbolColor, symbolType=self.symbol, filled=self.filled, symbolSize=self.symbolSize, XLabel=xlabel, connectdot=0, YLabel=ylabel, title="", fitcurve=self.showline, displayR=1, offset=(90, self.plotSize / 20, self.plotSize / 10, 90), showLabel=self.showIdentifiers, ) if rankSecondary == 1: dataXlabel, dataYlabel = webqtlUtil.calRank(xVals=dataX, yVals=dataY, N=len(dataX)) else: dataXlabel, dataYlabel = dataX, dataY gifmap2 = HT.Map(name="CorrelationPlotImageMap2") for i, item in enumerate(data_coordinate): one_rect_coordinate = "%d, %d, %d, %d" % (item[0] - 6, item[1] - 6, item[0] + 6, item[1] + 6) if isTissueCorr: one_rect_title = "%s (%s, %s)" % (fullTissueName[i], dataXlabel[i], dataYlabel[i]) else: one_rect_title = "%s (%s, %s)" % (dataZ[i], dataXlabel[i], dataYlabel[i]) gifmap2.areas.append(HT.Area(shape="rect", coords=one_rect_coordinate, title=one_rect_title)) filename = webqtlUtil.genRandStr("XY_") c.save(webqtlConfig.IMGDIR + filename, format="gif") img2 = HT.Image("/image/" + filename + ".gif", border=0, usemap="#CorrelationPlotImageMap2") mainForm_2 = HT.Form( cgi=os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), enctype="multipart/form-data", name="showDatabase2", submit=HT.Input(type="hidden"), ) hddn = { "FormID": "showDatabase2", "ProbeSetID": "_", "database": "_", "CellID": "_", "RISet": fd.RISet, "ProbeSetID2": "_", "database2": "_", "CellID2": "_", "allstrainlist": string.join(fd.strainlist, " "), "traitList": fd.formdata.getvalue("traitList"), } if fd.incparentsf1: hddn["incparentsf1"] = "ON" for key in hddn.keys(): mainForm_2.append(HT.Input(name=key, value=hddn[key], type="hidden")) if isSampleCorr: mainForm_2.append( HT.P(), HT.Blockquote( HT.Strong("X axis:"), HT.Blockquote(trait2Url), HT.Strong("Y axis:"), HT.Blockquote(trait1Url), style="width:%spx;" % self.plotSize, ), ) TD_LR.append(HT.BR(), HT.P()) TD_LR.append("\n", gifmap2, HT.P(), HT.P(), img2, HT.P(), mainForm_2) self.dict["body"] = str(TD_LR) else: heading = "Correlation Plot" detail = [ "Fewer than %d strain data were entered for %s data set. No statitical analysis has been attempted." % (self.corrMinInformative, fd.RISet) ] self.error(heading=heading, detail=detail) return
def __init__(self, fd): LRSFullThresh = 30 LRSInteractThresh = 25 maxPlotSize = 800 mainfmName = webqtlUtil.genRandStr("fm_") templatePage.__init__(self, fd) if not fd.genotype: fd.readData() ##Remove F1 and Parents fd.genotype = fd.genotype_1 plotType = fd.formdata.getvalue('plotType') self.dict['title'] = '%s Plot' % plotType main_title = HT.Paragraph("%s Plot" % plotType) main_title.__setattr__("class","title") interval1 = fd.formdata.getvalue('interval1') interval2 = fd.formdata.getvalue('interval2') flanka1, flanka2, chram = string.split(interval1) flankb1, flankb2, chrbm = string.split(interval2) traitValues = string.split(fd.formdata.getvalue('traitValues'), ',') traitValues = map(webqtlUtil.StringAsFloat, traitValues) traitStrains = string.split(fd.formdata.getvalue('traitStrains'), ',') flankaGeno = [] flankbGeno = [] for chr in fd.genotype: for locus in chr: if locus.name in (flanka1, flankb1): if locus.name == flanka1: flankaGeno = locus.genotype[:] else: flankbGeno = locus.genotype[:] if flankaGeno and flankbGeno: break flankaDict = {} flankbDict = {} for i in range(len(fd.genotype.prgy)): flankaDict[fd.genotype.prgy[i]] = flankaGeno[i] flankbDict[fd.genotype.prgy[i]] = flankbGeno[i] BB = [] BD = [] DB = [] DD = [] iValues = [] for i in range(len(traitValues)): if traitValues[i] != None: iValues.append(traitValues[i]) thisstrain = traitStrains[i] try: a1 = flankaDict[thisstrain] b1 = flankbDict[thisstrain] except: continue if a1 == -1.0: if b1 == -1.0: BB.append((thisstrain, traitValues[i])) elif b1 == 1.0: BD.append((thisstrain, traitValues[i])) elif a1 == 1.0: if b1 == -1.0: DB.append((thisstrain, traitValues[i])) elif b1 == 1.0: DD.append((thisstrain, traitValues[i])) else: pass #print BB, BD, DB, DD, max(iValues), min(iValues) plotHeight = 400 plotWidth = 600 xLeftOffset = 60 xRightOffset = 40 yTopOffset = 40 yBottomOffset = 60 canvasHeight = plotHeight + yTopOffset + yBottomOffset canvasWidth = plotWidth + xLeftOffset + xRightOffset canvas = pid.PILCanvas(size=(canvasWidth,canvasHeight)) XXX = [('Mat/Mat', BB), ('Mat/Pat', BD), ('Pat/Mat', DB), ('Pat/Pat', DD)] XLabel = "Interval 1 / Interval 2" if plotType == "Box": Plot.plotBoxPlot(canvas, XXX, offset=(xLeftOffset, xRightOffset, yTopOffset, yBottomOffset), XLabel = XLabel) else: #Could be a separate function, but seems no other uses max_Y = max(iValues) min_Y = min(iValues) scaleY = Plot.detScale(min_Y, max_Y) Yll = scaleY[0] Yur = scaleY[1] nStep = scaleY[2] stepY = (Yur - Yll)/nStep stepYPixel = plotHeight/(nStep) canvas.drawRect(plotWidth+xLeftOffset, plotHeight + yTopOffset, xLeftOffset, yTopOffset) ##draw Y Scale YYY = Yll YCoord = plotHeight + yTopOffset scaleFont=pid.Font(ttf="cour",size=11,bold=1) for i in range(nStep+1): strY = Plot.cformat(d=YYY, rank=0) YCoord = max(YCoord, yTopOffset) canvas.drawLine(xLeftOffset,YCoord,xLeftOffset-5,YCoord) canvas.drawString(strY, xLeftOffset -30,YCoord +5,font=scaleFont) YYY += stepY YCoord -= stepYPixel ##draw X Scale stepX = plotWidth/len(XXX) XCoord = xLeftOffset + 0.5*stepX YCoord = plotHeight + yTopOffset scaleFont = pid.Font(ttf="tahoma",size=12,bold=0) labelFont = pid.Font(ttf="tahoma",size=13,bold=0) for item in XXX: itemname, itemvalue = item canvas.drawLine(XCoord, YCoord,XCoord, YCoord+5, color=pid.black) canvas.drawString(itemname, XCoord - canvas.stringWidth(itemname,font=labelFont)/2.0,YCoord +20,font=labelFont) itemvalue.sort(webqtlUtil.cmpOrder2) j = 0 for item2 in itemvalue: tstrain, tvalue = item2 canvas.drawCross(XCoord, plotHeight + yTopOffset - (tvalue-Yll)*plotHeight/(Yur - Yll), color=pid.red,size=5) if j % 2 == 0: canvas.drawString(tstrain, XCoord+5, plotHeight + yTopOffset - \ (tvalue-Yll)*plotHeight/(Yur - Yll) +5, font=scaleFont, color=pid.blue) else: canvas.drawString(tstrain, XCoord-canvas.stringWidth(tstrain,font=scaleFont)-5, \ plotHeight + yTopOffset - (tvalue-Yll)*plotHeight/(Yur - Yll) +5, font=scaleFont, color=pid.blue) j += 1 XCoord += stepX labelFont=pid.Font(ttf="verdana",size=18,bold=0) canvas.drawString(XLabel, xLeftOffset + (plotWidth -canvas.stringWidth(XLabel,font=labelFont))/2.0, YCoord +40, font=labelFont) canvas.drawString("Value",xLeftOffset-40, YCoord-(plotHeight -canvas.stringWidth("Value",font=labelFont))/2.0, font=labelFont, angle =90) filename= webqtlUtil.genRandStr("Cate_") canvas.save(webqtlConfig.IMGDIR+filename, format='gif') img=HT.Image('/image/'+filename+'.gif',border=0) TD_LR = HT.TD(height=200,width="100%",bgColor='#eeeeee',valign='top') TD_LR.append(main_title, HT.Center(img))#, traitValues , len(traitValues), traitStrains, len(traitStrains), len(fd.genotype.prgy)) #TD_LR.append(main_title, HT.BR(), flanka1, flanka2, chram, HT.BR(), flankb1, flankb2, chrbm) self.dict['body'] = str(TD_LR)
def __init__(self, fd): templatePage.__init__(self, fd) if not fd.genotype: fd.readGenotype() strainlist2 = fd.strainlist if fd.allstrainlist: strainlist2 = fd.allstrainlist fd.readData(strainlist2) specialStrains = [] setStrains = [] for item in strainlist2: if item not in fd.strainlist and item.find('F1') < 0: specialStrains.append(item) else: setStrains.append(item) specialStrains.sort() #So called MDP Panel if specialStrains: specialStrains = fd.f1list+fd.parlist+specialStrains self.plotType = fd.formdata.getvalue('ptype', '0') plotStrains = strainlist2 if specialStrains: if self.plotType == '1': plotStrains = setStrains if self.plotType == '2': plotStrains = specialStrains self.dict['title'] = 'Basic Statistics' if not self.openMysql(): return self.showstrains = 1 self.identification = "unnamed trait" self.fullname = fd.formdata.getvalue('fullname', '') if self.fullname: self.Trait = webqtlTrait(fullname=self.fullname, cursor=self.cursor) self.Trait.retrieveInfo() else: self.Trait = None if fd.identification: self.identification = fd.identification self.dict['title'] = self.identification + ' / '+self.dict['title'] TD_LR = HT.TD(height=200,width="100%",bgColor='#eeeeee') ##should not display Variance, but cannot convert Variance to SE #print plotStrains, fd.allTraitData.keys() if len(fd.allTraitData) > 0: vals=[] InformData = [] for _strain in plotStrains: if fd.allTraitData.has_key(_strain): _val, _var = fd.allTraitData[_strain].val, fd.allTraitData[_strain].var if _val != None: vals.append([_strain, _val, _var]) InformData.append(_val) if len(vals) >= self.plotMinInformative: supertable2 = HT.TableLite(border=0, cellspacing=0, cellpadding=5,width="800") staIntro1 = HT.Paragraph("The table and plots below list the basic statistical analysis result of trait",HT.Strong(" %s" % self.identification)) ##### #anova ##### traitmean, traitmedian, traitvar, traitstdev, traitsem, N = reaper.anova(InformData) TDStatis = HT.TD(width="360", valign="top") tbl2 = HT.TableLite(cellpadding=5, cellspacing=0, Class="collap") dataXZ = vals[:] dataXZ.sort(self.cmpValue) tbl2.append(HT.TR(HT.TD("Statistic",align="center", Class="fs14 fwb ffl b1 cw cbrb", width = 200), HT.TD("Value", align="center", Class="fs14 fwb ffl b1 cw cbrb", width = 140))) tbl2.append(HT.TR(HT.TD("N of Cases",align="center", Class="fs13 b1 cbw c222"), HT.TD(N,nowrap="yes",align="center", Class="fs13 b1 cbw c222"))) tbl2.append(HT.TR(HT.TD("Mean",align="center", Class="fs13 b1 cbw c222",nowrap="yes"), HT.TD("%2.3f" % traitmean,nowrap="yes",align="center", Class="fs13 b1 cbw c222"))) tbl2.append(HT.TR(HT.TD("Median",align="center", Class="fs13 b1 cbw c222",nowrap="yes"), HT.TD("%2.3f" % traitmedian,nowrap="yes",align="center", Class="fs13 b1 cbw c222"))) #tbl2.append(HT.TR(HT.TD("Variance",align="center", Class="fs13 b1 cbw c222",nowrap="yes"), # HT.TD("%2.3f" % traitvar,nowrap="yes",align="center", Class="fs13 b1 cbw c222"))) tbl2.append(HT.TR(HT.TD("SEM",align="center", Class="fs13 b1 cbw c222",nowrap="yes"), HT.TD("%2.3f" % traitsem,nowrap="yes",align="center", Class="fs13 b1 cbw c222"))) tbl2.append(HT.TR(HT.TD("SD",align="center", Class="fs13 b1 cbw c222",nowrap="yes"), HT.TD("%2.3f" % traitstdev,nowrap="yes",align="center", Class="fs13 b1 cbw c222"))) tbl2.append(HT.TR(HT.TD("Minimum",align="center", Class="fs13 b1 cbw c222",nowrap="yes"), HT.TD("%s" % dataXZ[0][1],nowrap="yes",align="center", Class="fs13 b1 cbw c222"))) tbl2.append(HT.TR(HT.TD("Maximum",align="center", Class="fs13 b1 cbw c222",nowrap="yes"), HT.TD("%s" % dataXZ[-1][1],nowrap="yes",align="center", Class="fs13 b1 cbw c222"))) if self.Trait and self.Trait.db.type == 'ProbeSet': #IRQuest = HT.Href(text="Interquartile Range", url=webqtlConfig.glossaryfile +"#Interquartile",target="_blank", Class="fs14") #IRQuest.append(HT.BR()) #IRQuest.append(" (fold difference)") tbl2.append(HT.TR(HT.TD("Range (log2)",align="center", Class="fs13 b1 cbw c222",nowrap="yes"), HT.TD("%2.3f" % (dataXZ[-1][1]-dataXZ[0][1]),nowrap="yes",align="center", Class="fs13 b1 cbw c222"))) tbl2.append(HT.TR(HT.TD(HT.Span("Range (fold)"),align="center", Class="fs13 b1 cbw c222",nowrap="yes"), HT.TD("%2.2f" % pow(2.0,(dataXZ[-1][1]-dataXZ[0][1])), nowrap="yes",align="center", Class="fs13 b1 cbw c222"))) tbl2.append(HT.TR(HT.TD(HT.Span("Quartile Range",HT.BR()," (fold difference)"),align="center", Class="fs13 b1 cbw c222",nowrap="yes"), HT.TD("%2.2f" % pow(2.0,(dataXZ[int((N-1)*3.0/4.0)][1]-dataXZ[int((N-1)/4.0)][1])), nowrap="yes",align="center", Class="fs13 b1 cbw c222"))) # (Lei Yan) # 2008/12/19 self.Trait.retrieveData() #XZ, 04/01/2009: don't try to get H2 value for probe. if self.Trait.cellid: pass else: self.cursor.execute("SELECT DataId, h2 from ProbeSetXRef WHERE DataId = %d" % self.Trait.mysqlid) dataid, heritability = self.cursor.fetchone() if heritability: tbl2.append(HT.TR(HT.TD(HT.Span("Heritability"),align="center", Class="fs13 b1 cbw c222",nowrap="yes"),HT.TD("%s" % heritability, nowrap="yes",align="center", Class="fs13 b1 cbw c222"))) else: tbl2.append(HT.TR(HT.TD(HT.Span("Heritability"),align="center", Class="fs13 b1 cbw c222",nowrap="yes"),HT.TD("NaN", nowrap="yes",align="center", Class="fs13 b1 cbw c222"))) # Lei Yan # 2008/12/19 TDStatis.append(tbl2) plotHeight = 220 plotWidth = 120 xLeftOffset = 60 xRightOffset = 25 yTopOffset = 20 yBottomOffset = 53 canvasHeight = plotHeight + yTopOffset + yBottomOffset canvasWidth = plotWidth + xLeftOffset + xRightOffset canvas = pid.PILCanvas(size=(canvasWidth,canvasHeight)) XXX = [('', InformData[:])] Plot.plotBoxPlot(canvas, XXX, offset=(xLeftOffset, xRightOffset, yTopOffset, yBottomOffset), XLabel= "Trait") filename= webqtlUtil.genRandStr("Box_") canvas.save(webqtlConfig.IMGDIR+filename, format='gif') img=HT.Image('/image/'+filename+'.gif',border=0) #supertable2.append(HT.TR(HT.TD(staIntro1, colspan=3 ))) tb = HT.TableLite(border=0, cellspacing=0, cellpadding=0) tb.append(HT.TR(HT.TD(img, align="left", style="border: 1px solid #999999; padding:0px;"))) supertable2.append(HT.TR(TDStatis, HT.TD(tb))) dataXZ = vals[:] tvals = [] tnames = [] tvars = [] for i in range(len(dataXZ)): tvals.append(dataXZ[i][1]) tnames.append(webqtlUtil.genShortStrainName(fd, dataXZ[i][0])) tvars.append(dataXZ[i][2]) nnStrain = len(tnames) sLabel = 1 ###determine bar width and space width if nnStrain < 20: sw = 4 elif nnStrain < 40: sw = 3 else: sw = 2 ### 700 is the default plot width minus Xoffsets for 40 strains defaultWidth = 650 if nnStrain > 40: defaultWidth += (nnStrain-40)*10 defaultOffset = 100 bw = int(0.5+(defaultWidth - (nnStrain-1.0)*sw)/nnStrain) if bw < 10: bw = 10 plotWidth = (nnStrain-1)*sw + nnStrain*bw + defaultOffset plotHeight = 500 #print [plotWidth, plotHeight, bw, sw, nnStrain] c = pid.PILCanvas(size=(plotWidth,plotHeight)) Plot.plotBarText(c, tvals, tnames, variance=tvars, YLabel='Value', title='%s by Case (sorted by name)' % self.identification, sLabel = sLabel, barSpace = sw) filename= webqtlUtil.genRandStr("Bar_") c.save(webqtlConfig.IMGDIR+filename, format='gif') img0=HT.Image('/image/'+filename+'.gif',border=0) dataXZ = vals[:] dataXZ.sort(self.cmpValue) tvals = [] tnames = [] tvars = [] for i in range(len(dataXZ)): tvals.append(dataXZ[i][1]) tnames.append(webqtlUtil.genShortStrainName(fd, dataXZ[i][0])) tvars.append(dataXZ[i][2]) c = pid.PILCanvas(size=(plotWidth,plotHeight)) Plot.plotBarText(c, tvals, tnames, variance=tvars, YLabel='Value', title='%s by Case (ranked)' % self.identification, sLabel = sLabel, barSpace = sw) filename= webqtlUtil.genRandStr("Bar_") c.save(webqtlConfig.IMGDIR+filename, format='gif') img1=HT.Image('/image/'+filename+'.gif',border=0) # Lei Yan # 05/18/2009 # report title = HT.Paragraph('REPORT on the variation of Shh (or PCA Composite Trait XXXX) (sonic hedgehog) in the (insert Data set name) of (insert Species informal name, e.g., Mouse, Rat, Human, Barley, Arabidopsis)', Class="title") header = HT.Paragraph('''This report was generated by GeneNetwork on May 11, 2009, at 11.20 AM using the Basic Statistics module (v 1.0) and data from the Hippocampus Consortium M430v2 (Jun06) PDNN data set. For more details and updates on this data set please link to URL:get Basic Statistics''') hr = HT.HR() p1 = HT.Paragraph('''Trait values for Shh were taken from the (insert Database name, Hippocampus Consortium M430v2 (Jun06) PDNN). GeneNetwork contains data for NN (e.g., 99) cases. In general, data are averages for each case. A summary of mean, median, and the range of these data are provided in Table 1 and in the box plot (Figure 1). Data for individual cases are provided in Figure 2A and 2B, often with error bars (SEM). ''') p2 = HT.Paragraph('''Trait values for Shh range 5.1-fold: from a low of 8.2 (please round value) in 129S1/SvImJ to a high of 10.6 (please round value) in BXD9. The interquartile range (the difference between values closest to the 25% and 75% levels) is a more modest 1.8-fold. The mean value is XX. ''') t1 = HT.Paragraph('''Table 1. Summary of Shh data from the Hippocampus Consortium M430v2 (june06) PDNN data set''') f1 = HT.Paragraph('''Figure 1. ''') f1.append(HT.Href(text="Box plot", url="http://davidmlane.com/hyperstat/A37797.html", target="_blank", Class="fs14")) f1.append(HT.Text(''' of Shh data from the Hippocampus Consortium M430v2 (june06) PDNN data set''')) f2A = HT.Paragraph('''Figure 2A: Bar chart of Shh data ordered by case from the Hippocampus Consortium M430v2 (june06) PDNN data set''') f2B = HT.Paragraph('''Figure 2B: Bar chart of Shh values ordered by from the Hippocampus Consortium M430v2 (june06) PDNN data set''') TD_LR.append(HT.Blockquote(title, HT.P(), header, hr, p1, HT.P(), p2, HT.P(), supertable2, t1, f1, HT.P(), img0, f2A, HT.P(), img1, f2B)) self.dict['body'] = str(TD_LR) else: heading = "Basic Statistics" detail = ['Fewer than %d case data were entered for %s data set. No statitical analysis has been attempted.' % (self.plotMinInformative, fd.RISet)] self.error(heading=heading,detail=detail) return else: heading = "Basic Statistics" detail = ['Empty data set, please check your data.'] self.error(heading=heading,detail=detail) return
def __init__(self, fd): LRSFullThresh = 30 LRSInteractThresh = 25 templatePage.__init__(self, fd) if not fd.genotype: fd.readData() incVars = 0 _genotype = fd.genotype_1 _strains, _vals, _vars, N = fd.informativeStrains(_genotype.prgy, incVars) self.dict['title'] = 'Pair-Scan Plot' if not self.openMysql(): return iPermuCheck = fd.formdata.getvalue('directPermuCheckbox') try: graphtype = int(fd.formdata.getvalue('graphtype')) except: graphtype = 1 try: graphsort = int(fd.formdata.getvalue('graphSort')) except: graphsort = 1 try: returnIntervalPairNum = int(fd.formdata.getvalue('pairScanReturn')) except: returnIntervalPairNum = 50 pairIntro = HT.Blockquote("The graph below displays pair-scan results for the trait ",HT.Strong(" %s" % fd.identification)) if not graphsort: tblIntro = HT.Blockquote('This table lists LRS scores for the top %d pairs of intervals (Interval 1 on the left and Interval 2 on the right). Pairs are sorted by the "LRS Full" column. Both intervals are defined by proximal and distal markers that flank the single best position.' % returnIntervalPairNum) else: tblIntro = HT.Blockquote('This table lists LRS scores for the top %d pairs of intervals (Interval 1 on the left and Interval 2 on the right). Pairs are sorted by the "LRS Interaction" column. Both intervals are defined by proximal and distal markers that flank the single best position.' % returnIntervalPairNum) try: thisTrait = webqtlTrait(fullname=fd.formdata.getvalue("fullname"), cursor=self.cursor) pairIntro.append(' from the database ' , thisTrait.db.genHTML()) except: pass pairIntro.append('. The upper left half of the plot highlights any epistatic interactions (corresponding to the column labeled "LRS Interact"). In contrast, the lower right half provides a summary of LRS of the full model, representing cumulative effects of linear and non-linear terms (column labeled "LRS Full"). The WebQTL implementation of the scan for 2-locus epistatic interactions is based on the DIRECT global optimization algorithm developed by ',HT.Href(text ="Ljungberg",url='http://user.it.uu.se/~kl/qtl_software.html',target="_blank", Class = "fs14 fwn"),', Holmgren, and Carlborg (',HT.Href(text = "2004",url='http://bioinformatics.oupjournals.org/cgi/content/abstract/bth175?ijkey=21Pp0pgOuBL6Q&keytype=ref', Class = "fs14 fwn"),').') main_title = HT.Paragraph("Pair-Scan Results: An Analysis of Epistatic Interactions") main_title.__setattr__("class","title") subtitle1 = HT.Paragraph("Pair-Scan Graph") subtitle3 = HT.Paragraph("Pair-Scan Top LRS") subtitle1.__setattr__("class","subtitle") subtitle3.__setattr__("class","subtitle") self.identification = "unnamed trait" if fd.identification: self.identification = fd.identification self.dict['title'] = self.identification + ' / '+self.dict['title'] ##################################### # # Remove the Parents & F1 data # ##################################### if _vals: if len(_vals) > webqtlConfig.KMININFORMATIVE: ResultFull = [] ResultInteract = [] ResultAdd = [] #permutation test subtitle2 = '' permuTbl = '' permuIntro = '' if iPermuCheck: subtitle2 = HT.Paragraph("Pair-Scan Permutation Results") subtitle2.__setattr__("class","subtitle") permuIntro = HT.Blockquote("Phenotypes were randomly permuted 500 times among strains or individuals and reanalyzed using the pair-scan algorithm. We extracted the single highest LRS for the full model for each of these permuted data sets. The histograms of these highest LRS values provide an empirical way to estimate the probability of obtaining an LRS above suggestive or significant thresholds.") prtmuTblIntro1 = HT.Paragraph("The following table gives threshold values for Suggestive (P=0.63) and Significant associations (P=0.05) defined by Lander & Kruglyak and for the slightly more stringent P=0.01 level. (The Highly Significant level of Lander & Kruglyak corresponds to P=0.001 and cannot be estimated with 500 permutations.)") prtmuTblIntro2 = HT.Paragraph("If the full model exceeds the permutation-based Significant threshold, then different models for those locations can be tested by conventional chi-square tests at P<0.01. Interaction is significant if LRS Interact exceeds 6.64 for RI strains or 13.28 for an F2. If interaction is not significant, the two-QTL model is better than a one-QTL model if LRS Additive exceeds LRS 1 or LRS 2 by 6.64 for RI strains or 9.21 for an F2.") ResultFull, ResultInteract, ResultAdd = direct.permu(webqtlConfig.GENODIR, _vals, _strains, fd.RISet, 500) #XZ, 08/14/2008: add module name webqtlConfig ResultFull.sort() ResultInteract.sort() ResultAdd.sort() nPermuResult = len(ResultFull) # draw Histogram cFull = pid.PILCanvas(size=(400,300)) Plot.plotBar(cFull, ResultFull,XLabel='LRS',YLabel='Frequency',title=' Histogram of LRS Full') #plotBar(cFull,10,10,390,290,ResultFull,XLabel='LRS',YLabel='Frequency',title=' Histogram of LRS Full') filename= webqtlUtil.genRandStr("Pair_") cFull.save(webqtlConfig.IMGDIR+filename, format='gif') imgFull=HT.Image('/image/'+filename+'.gif',border=0,alt='Histogram of LRS Full') superPermuTbl = HT.TableLite(border=0, cellspacing=0, cellpadding=0,bgcolor ='#999999') permuTbl2 = HT.TableLite(border=0, cellspacing= 1, cellpadding=5) permuTbl2.append(HT.TR(HT.TD(HT.Font('LRS', color = '#FFFFFF')), HT.TD(HT.Font('p = 0.63', color = '#FFFFFF'), width = 150, align='Center'), HT.TD(HT.Font('p = 0.05', color = '#FFFFFF'), width = 150, align='Center'), HT.TD(HT.Font('p = 0.01', color = '#FFFFFF'), width = 150, align='Center'),bgColor='royalblue')) permuTbl2.append(HT.TR(HT.TD('Full'), HT.TD('%2.1f' % ResultFull[int(nPermuResult*0.37 -1)], align="Center"), HT.TD('%2.1f' % ResultFull[int(nPermuResult*0.95 -1)], align="Center"), HT.TD('%2.1f' % ResultFull[int(nPermuResult*0.99 -1)], align="Center"),bgColor="#eeeeee")) superPermuTbl.append(HT.TD(HT.TD(permuTbl2))) permuTbl1 = HT.TableLite(border=0, cellspacing= 0, cellpadding=5,width='100%') permuTbl1.append(HT.TR(HT.TD(imgFull, align="Center", width = 410), HT.TD(prtmuTblIntro1, superPermuTbl, prtmuTblIntro2, width = 490))) permuTbl = HT.Center(permuTbl1, HT.P()) #permuTbl.append(HT.TR(HT.TD(HT.BR(), 'LRS Full = %2.1f, ' % ResultFull[int(nPermuResult*0.37 -1)], 'LRS Full = %2.1f, ' % ResultFull[int(nPermuResult*0.95 -1)], 'LRS Full highly significant (p=0.001) = %2.1f, ' % ResultFull[int(nPermuResult*0.999 -1)] , HT.BR(), 'LRS Interact suggestive (p=0.63) = %2.1f, ' % ResultInteract[int(nPermuResult*0.37 -1)], 'LRS Interact significant (p=0.05) = %2.1f, ' % ResultInteract[int(nPermuResult*0.95 -1)], 'LRS Interact = %2.1f, ' % ResultInteract[int(nPermuResult*0.999 -1)] , HT.BR(),'LRS Additive suggestive (p=0.63) = %2.1f, ' % ResultAdd[int(nPermuResult*0.37 -1)], 'LRS Additive significant (p=0.05) = %2.1f, ' % ResultAdd[int(nPermuResult*0.95 -1)], 'LRS Additive highly significant (p=0.001) = %2.1f, ' % ResultAdd[int(nPermuResult*0.999 -1)], HT.BR(), 'Total number of permutation is %d' % nPermuResult, HT.BR(), HT.BR(),colspan=2))) #tblIntro.append(HT.P(), HT.Center(permuTbl)) #print vals, strains, fd.RISet d = direct.direct(webqtlConfig.GENODIR, _vals, _strains, fd.RISet, 8000)#XZ, 08/14/2008: add module name webqtlConfig chrsInfo = d[2] sum = 0 offsets = [0] i = 0 for item in chrsInfo: if i > 0: offsets.append(sum) sum += item[0] i += 1 offsets.append(sum) #print sum,offset,d[2] canvasWidth = 880 canvasHeight = 880 if graphtype: colorAreaWidth = 230 else: colorAreaWidth = 0 c = pid.PILCanvas(size=(canvasWidth + colorAreaWidth ,canvasHeight)) xoffset = 40 yoffset = 40 width = canvasWidth - xoffset*2 height = canvasHeight - yoffset*2 xscale = width/sum yscale = height/sum rectInfo = d[1] rectInfo.sort(webqtlUtil.cmpLRSFull) finecolors = Plot.colorSpectrum(250) finecolors.reverse() regLRS = [0]*height #draw LRS Full for item in rectInfo: LRSFull,LRSInteract,LRSa,LRSb,chras,chram,chrae,chrbs,chrbm,chrbe,chra,chrb,flanka,flankb = item if LRSFull > 30: dcolor = pid.red elif LRSFull > 20: dcolor = pid.orange elif LRSFull > 10: dcolor = pid.olivedrab elif LRSFull > 0: dcolor = pid.grey else: LRSFull = 0 dcolor = pid.grey chras += offsets[chra] chram += offsets[chra] chrae += offsets[chra] chrbs += offsets[chrb] chrbm += offsets[chrb] chrbe += offsets[chrb] regLRSD = int(chram*yscale) if regLRS[regLRSD] < LRSa: regLRS[regLRSD] = LRSa regLRSD = int(chrbm*yscale) if regLRS[regLRSD] < LRSb: regLRS[regLRSD] = LRSb if graphtype: colorIndex = int(LRSFull *250 /LRSFullThresh) if colorIndex >= 250: colorIndex = 249 dcolor = finecolors[colorIndex] if chra != chrb or ((chrbe - chrae) > 10 and (chrbs - chras) > 10): c.drawRect(xoffset+chrbs*xscale,yoffset+height-chras*yscale,xoffset+chrbe*xscale,yoffset+height-chrae*yscale,edgeColor=dcolor,fillColor=dcolor,edgeWidth = 0) else: c.drawPolygon([(xoffset+chrbs*xscale,yoffset+height-chras*yscale),(xoffset+chrbe*xscale,yoffset+height-chras*yscale),(xoffset+chrbe*xscale,yoffset+height-chrae*yscale)],edgeColor=dcolor,fillColor=dcolor,edgeWidth = 0,closed =1) else: c.drawCross(xoffset+chrbm*xscale,yoffset+height-chram*yscale,color=dcolor,size=2) #draw Marker Regression LRS if graphtype: """ maxLRS = max(regLRS) pts = [] i = 0 for item in regLRS: pts.append((xoffset+width+35+item*50/maxLRS, yoffset+height-i)) i += 1 c.drawPolygon(pts,edgeColor=pid.blue,edgeWidth=1,closed=0) """ LRS1Thresh = 16.2 i = 0 for item in regLRS: colorIndex = int(item *250 /LRS1Thresh) if colorIndex >= 250: colorIndex = 249 dcolor = finecolors[colorIndex] c.drawLine(xoffset+width+35,yoffset+height-i,xoffset+width+55,yoffset+height-i,color=dcolor) i += 1 labelFont=pid.Font(ttf="arial",size=20,bold=0) c.drawString('Single Locus Regression',xoffset+width+90,yoffset+height, font = labelFont,color=pid.dimgray,angle=90) #draw LRS Interact rectInfo.sort(webqtlUtil.cmpLRSInteract) for item in rectInfo: LRSFull,LRSInteract,LRSa,LRSb,chras,chram,chrae,chrbs,chrbm,chrbe,chra,chrb,flanka,flankb = item if LRSInteract > 30: dcolor = pid.red elif LRSInteract > 20: dcolor = pid.orange elif LRSInteract > 10: dcolor = pid.olivedrab elif LRSInteract > 0: dcolor = pid.grey else: LRSInteract = 0 dcolor = pid.grey chras += offsets[chra] chram += offsets[chra] chrae += offsets[chra] chrbs += offsets[chrb] chrbm += offsets[chrb] chrbe += offsets[chrb] if graphtype: colorIndex = int(LRSInteract *250 / LRSInteractThresh ) if colorIndex >= 250: colorIndex = 249 dcolor = finecolors[colorIndex] if chra != chrb or ((chrbe - chrae) > 10 and (chrbs - chras) > 10): c.drawRect(xoffset+chras*xscale,yoffset+height-chrbs*yscale,xoffset+chrae*xscale,yoffset+height-chrbe*yscale,edgeColor=dcolor,fillColor=dcolor,edgeWidth = 0) else: c.drawPolygon([(xoffset+chras*xscale,yoffset+height-chrbs*yscale),(xoffset+chras*xscale,yoffset+height-chrbe*yscale),(xoffset+chrae*xscale,yoffset+height-chrbe*yscale)],edgeColor=dcolor,fillColor=dcolor,edgeWidth = 0,closed =1) else: c.drawCross(xoffset+chram*xscale,yoffset+height-chrbm*yscale,color=dcolor,size=2) #draw chromosomes label labelFont=pid.Font(ttf="tahoma",size=24,bold=0) i = 0 for item in chrsInfo: strWidth = c.stringWidth(item[1],font=labelFont) c.drawString(item[1],xoffset+offsets[i]*xscale +(item[0]*xscale-strWidth)/2,canvasHeight -15,font = labelFont,color=pid.dimgray) c.drawString(item[1],xoffset+offsets[i]*xscale +(item[0]*xscale-strWidth)/2,yoffset-10,font = labelFont,color=pid.dimgray) c.drawString(item[1],xoffset-strWidth-5,yoffset+height - offsets[i]*yscale -(item[0]*yscale-22)/2,font = labelFont,color=pid.dimgray) c.drawString(item[1],canvasWidth-xoffset+5,yoffset+height - offsets[i]*yscale -(item[0]*yscale-22)/2,font = labelFont,color=pid.dimgray) i += 1 c.drawRect(xoffset,yoffset,xoffset+width,yoffset+height) for item in offsets: c.drawLine(xoffset,yoffset+height-item*yscale,xoffset+width,yoffset+height-item*yscale) c.drawLine(xoffset+item*xscale,yoffset,xoffset+item*xscale,yoffset+height) #draw pngMap pngMap = HT.Map(name='pairPlotMap') #print offsets, len(offsets) for i in range(len(offsets)-1): for j in range(len(offsets)-1): COORDS = "%d,%d,%d,%d" %(xoffset+offsets[i]*xscale, yoffset+height-offsets[j+1]*yscale, xoffset+offsets[i+1]*xscale, yoffset+height-offsets[j]*yscale) HREF = "javascript:showPairPlot(%d,%d);" % (i,j) Areas = HT.Area(shape='rect',coords=COORDS,href=HREF) pngMap.areas.append(Areas) #draw spectrum if graphtype: i = 0 labelFont=pid.Font(ttf="tahoma",size=14,bold=0) middleoffsetX = 180 for dcolor in finecolors: if i % 50 == 0: c.drawLine(xoffset+ width +middleoffsetX-15 , height + yoffset -i, xoffset+ width +middleoffsetX-20,height + yoffset -i, color=pid.black) c.drawString('%d' % int(LRSInteractThresh*i/250.0),xoffset+ width+ middleoffsetX-40,height + yoffset -i +5, font = labelFont,color=pid.black) c.drawLine(xoffset+ width +middleoffsetX+15 , height + yoffset -i, xoffset+ width +middleoffsetX+20 ,height + yoffset -i, color=pid.black) c.drawString('%d' % int(LRSFullThresh*i/250.0),xoffset+ width + middleoffsetX+25,height + yoffset -i +5, font = labelFont,color=pid.black) c.drawLine(xoffset+ width +middleoffsetX-15 , height + yoffset -i, xoffset+ width +middleoffsetX+15 ,height + yoffset -i, color=dcolor) i += 1 if i % 50 == 0: i -= 1 c.drawLine(xoffset+ width +middleoffsetX-15 , height + yoffset -i, xoffset+ width +middleoffsetX-20,height + yoffset -i, color=pid.black) c.drawString('%d' % ceil(LRSInteractThresh*i/250.0),xoffset+ width + middleoffsetX-40,height + yoffset -i +5, font = labelFont,color=pid.black) c.drawLine(xoffset+ width +middleoffsetX+15 , height + yoffset -i, xoffset+ width +middleoffsetX+20 ,height + yoffset -i, color=pid.black) c.drawString('%d' % ceil(LRSFullThresh*i/250.0),xoffset+ width + middleoffsetX+25,height + yoffset -i +5, font = labelFont,color=pid.black) labelFont=pid.Font(ttf="verdana",size=20,bold=0) c.drawString('LRS Interaction',xoffset+ width + middleoffsetX-50,height + yoffset, font = labelFont,color=pid.dimgray,angle=90) c.drawString('LRS Full',xoffset+ width + middleoffsetX+50,height + yoffset, font = labelFont,color=pid.dimgray,angle=90) filename= webqtlUtil.genRandStr("Pair_") c.save(webqtlConfig.IMGDIR+filename, format='png') img2=HT.Image('/image/'+filename+'.png',border=0,usemap='#pairPlotMap') form0 = HT.Form( cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), enctype='multipart/form-data', name='showPairPlot', submit=HT.Input(type='hidden')) hddn0 = {'FormID':'pairPlot','Chr_A':'_','Chr_B':'','idata':string.join(map(str, _vals), ','),'istrain':string.join(_strains, ','),'RISet':fd.RISet} for key in hddn0.keys(): form0.append(HT.Input(name=key, value=hddn0[key], type='hidden')) form0.append(img2, pngMap) mainfmName = webqtlUtil.genRandStr("fm_") txtform = HT.Form( cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), enctype='multipart/form-data', name=mainfmName, submit=HT.Input(type='hidden')) hddn = {'FormID':'showDatabase','ProbeSetID':'_','database':fd.RISet+"Geno",'CellID':'_','RISet':fd.RISet} #XZ, Aug 11, 2010: The variable traitStrains is not assigned right values before (should not be assigned fd.strainlist). #hddn['traitStrains'] = string.join(fd.strainlist, ',') hddn['traitStrains'] = string.join(_strains, ',') hddn['traitValues'] = string.join(map(str, _vals), ',') hddn['interval1'] = '' hddn['interval2'] = '' if fd.incparentsf1: hddn['incparentsf1']='ON' for key in hddn.keys(): txtform.append(HT.Input(name=key, value=hddn[key], type='hidden')) tbl = HT.TableLite(Class="collap", cellspacing=1, cellpadding=5,width=canvasWidth + colorAreaWidth) c1 = HT.TD('Interval 1',colspan=3,align="Center", Class="fs13 fwb ffl b1 cw cbrb") c2 = HT.TD('Interval 2',colspan=3,align="Center", Class="fs13 fwb ffl b1 cw cbrb") c11 = HT.TD('Position',rowspan=2,align="Center", Class="fs13 fwb ffl b1 cw cbrb") c12 = HT.TD('Flanking Markers',colspan=2,align="Center", Class="fs13 fwb ffl b1 cw cbrb") c111 = HT.TD('Proximal',align="Center", Class="fs13 fwb ffl b1 cw cbrb") c112 = HT.TD('Distal',align="Center", Class="fs13 fwb ffl b1 cw cbrb") c3 = HT.TD('LRS Full',rowspan=3,align="Center", Class="fs13 fwb ffl b1 cw cbrb") c4 = HT.TD('LRS Additive',rowspan=3,align="Center", Class="fs13 fwb ffl b1 cw cbrb") c5 = HT.TD('LRS Interact',rowspan=3,align="Center", Class="fs13 fwb ffl b1 cw cbrb") c6 = HT.TD('LRS 1',rowspan=3,align="Center", Class="fs13 fwb ffl b1 cw cbrb") c7 = HT.TD('LRS 2',rowspan=3,align="Center", Class="fs13 fwb ffl b1 cw cbrb") tbl.append(HT.TR(c1,c3,c4,c5,c6,c7,c2)) tbl.append(HT.TR(c11,c12,c11,c12)) tbl.append(HT.TR(c111,c112,c111,c112)) if not graphsort: #Sort by LRS Full rectInfo.sort(webqtlUtil.cmpLRSFull) rectInfoReturned = rectInfo[len(rectInfo) - returnIntervalPairNum:] rectInfoReturned.reverse() for item in rectInfoReturned: LRSFull,LRSInteract,LRSa,LRSb,chras,chram,chrae,chrbs,chrbm,chrbe,chra,chrb,flanka,flankb = item LRSAdditive = LRSFull - LRSInteract flanka1,flanka2 = string.split(flanka) flankb1,flankb2 = string.split(flankb) urla1 = HT.Href(text = flanka1, url = "javascript:showTrait('%s','%s');" % (mainfmName, flanka1),Class= "fs12 fwn") urla2 = HT.Href(text = flanka2, url = "javascript:showTrait('%s','%s');" % (mainfmName, flanka2),Class= "fs12 fwn") urlb1 = HT.Href(text = flankb1, url = "javascript:showTrait('%s','%s');" % (mainfmName, flankb1),Class= "fs12 fwn") urlb2 = HT.Href(text = flankb2, url = "javascript:showTrait('%s','%s');" % (mainfmName, flankb2),Class= "fs12 fwn") urlGenGraph = HT.Href(text = "Plot", url = "javascript:showCateGraph('%s', '%s %s %2.3f', '%s %s %2.3f');" % (mainfmName, flanka1, flanka2, chram, flankb1, flankb2, chrbm),Class= "fs12 fwn") tr1 = HT.TR( HT.TD('Chr %s @ %2.1f cM ' % (chrsInfo[chra][1],chram),Class= "fs12 b1 fwn"), HT.TD(urla1,Class= "fs12 b1 fwn"), HT.TD(urla2,Class= "fs12 b1 fwn"), HT.TD('%2.3f ' % LRSFull, urlGenGraph,Class= "fs12 b1 fwn"), HT.TD('%2.3f' % LRSAdditive,Class= "fs12 b1 fwn"), HT.TD('%2.3f' % LRSInteract,Class= "fs12 b1 fwn"), HT.TD('%2.3f' % LRSa,Class= "fs12 b1 fwn"), HT.TD('%2.3f' % LRSb,Class= "fs12 b1 fwn"), HT.TD('Chr %s @ %2.1f cM' % (chrsInfo[chrb][1],chrbm),Class= "fs12 b1 fwn"), HT.TD(urlb1,Class= "fs12 b1 fwn"), HT.TD(urlb2,Class= "fs12 b1 fwn")) tbl.append(tr1) plotType1 = HT.Input(type="radio", name="plotType", value ="Dot", checked=1) plotType2 = HT.Input(type="radio", name="plotType", value ="Box") plotText = HT.Paragraph("Plot Type : ", plotType1, " Dot ", plotType2, " Box", ) txtform.append(plotText, tbl) TD_LR = HT.TD(colspan=2,height=200,width="100%",bgColor='#eeeeee') TD_LR.append(main_title,HT.Blockquote(subtitle1, pairIntro, HT.P(), HT.Center(form0,HT.P())),HT.Blockquote(subtitle2, permuIntro,HT.P(), HT.Center(permuTbl)), HT.Blockquote(subtitle3, tblIntro, HT.P(),HT.Center(txtform), HT.P())) self.dict['body'] = str(TD_LR) else: heading = "Direct Plot" detail = ['Fewer than %d strain data were entered for %s data set. No statitical analysis has been attempted.' % (webqtlConfig.KMININFORMATIVE, fd.RISet)] self.error(heading=heading,detail=detail) return else: heading = "Direct Plot" detail = ['Empty data set, please check your data.'] self.error(heading=heading,detail=detail) return
def __init__(self, fd): templatePage.__init__(self, fd) self.initializeDisplayParameters(fd) if not fd.genotype: fd.readGenotype() if fd.allstrainlist: mdpchoice = fd.formdata.getvalue('MDPChoice') if mdpchoice == "1": strainlist = fd.f1list + fd.strainlist elif mdpchoice == "2": strainlist = [] strainlist2 = fd.f1list + fd.strainlist for strain in fd.allstrainlist: if strain not in strainlist2: strainlist.append(strain) #So called MDP Panel if strainlist: strainlist = fd.f1list+fd.parlist+strainlist else: strainlist = fd.allstrainlist fd.readData(fd.allstrainlist) else: mdpchoice = None strainlist = fd.strainlist fd.readData() #if fd.allstrainlist: # fd.readData(fd.allstrainlist) # strainlist = fd.allstrainlist #else: # fd.readData() # strainlist = fd.strainlist if not self.openMysql(): return isSampleCorr = 0 #XZ: initial value is false isTissueCorr = 0 #XZ: initial value is false #Javascript functions (showCorrelationPlot2, showTissueCorrPlot) have made sure the correlation type is either sample correlation or tissue correlation. if (self.database and (self.ProbeSetID != 'none')): isSampleCorr = 1 elif (self.X_geneSymbol and self.Y_geneSymbol): isTissueCorr = 1 else: heading = "Correlation Type Error" detail = ["For the input parameters, GN can not recognize the correlation type is sample correlation or tissue correlation."] self.error(heading=heading,detail=detail) return TD_LR = HT.TD(colspan=2,height=200,width="100%",bgColor='#eeeeee', align="left", wrap="off") dataX=[] dataY=[] dataZ=[] # shortname fullTissueName=[] if isTissueCorr: dataX, dataY, xlabel, ylabel, dataZ, fullTissueName = self.getTissueLabelsValues(X_geneSymbol=self.X_geneSymbol, Y_geneSymbol=self.Y_geneSymbol, TissueProbeSetFreezeId=self.TissueProbeSetFreezeId) plotHeading = HT.Paragraph('Tissue Correlation Scatterplot') plotHeading.__setattr__("class","title") if self.xAxisLabel == '': self.xAxisLabel = xlabel if self.yAxisLabel == '': self.yAxisLabel = ylabel if isSampleCorr: plotHeading = HT.Paragraph('Sample Correlation Scatterplot') plotHeading.__setattr__("class","title") #XZ: retrieve trait 1 info, Y axis trait1_data = [] #trait 1 data trait1Url = '' try: Trait1 = webqtlTrait(db=self.database, name=self.ProbeSetID, cellid=self.CellID, cursor=self.cursor) Trait1.retrieveInfo() Trait1.retrieveData() except: heading = "Retrieve Data" detail = ["The database you just requested has not been established yet."] self.error(heading=heading,detail=detail) return trait1_data = Trait1.exportData(strainlist) if Trait1.db.type == 'Publish' and Trait1.confidential: trait1Url = Trait1.genHTML(dispFromDatabase=1, privilege=self.privilege, userName=self.userName, authorized_users=Trait1.authorized_users) else: trait1Url = Trait1.genHTML(dispFromDatabase=1) if self.yAxisLabel == '': self.yAxisLabel= '%s : %s' % (Trait1.db.shortname, Trait1.name) if Trait1.cellid: self.yAxisLabel += ' : ' + Trait1.cellid #XZ, retrieve trait 2 info, X axis traitdata2 = [] #trait 2 data _vals = [] #trait 2 data trait2Url = '' if ( self.database2 and (self.ProbeSetID2 != 'none') ): try: Trait2 = webqtlTrait(db=self.database2, name=self.ProbeSetID2, cellid=self.CellID2, cursor=self.cursor) Trait2.retrieveInfo() Trait2.retrieveData() except: heading = "Retrieve Data" detail = ["The database you just requested has not been established yet."] self.error(heading=heading,detail=detail) return if Trait2.db.type == 'Publish' and Trait2.confidential: trait2Url = Trait2.genHTML(dispFromDatabase=1, privilege=self.privilege, userName=self.userName, authorized_users=Trait2.authorized_users) else: trait2Url = Trait2.genHTML(dispFromDatabase=1) traitdata2 = Trait2.exportData(strainlist) _vals = traitdata2[:] if self.xAxisLabel == '': self.xAxisLabel = '%s : %s' % (Trait2.db.shortname, Trait2.name) if Trait2.cellid: self.xAxisLabel += ' : ' + Trait2.cellid else: for item in strainlist: if fd.allTraitData.has_key(item): _vals.append(fd.allTraitData[item].val) else: _vals.append(None) if self.xAxisLabel == '': if fd.identification: self.xAxisLabel = fd.identification else: self.xAxisLabel = "User Input Data" try: Trait2 = webqtlTrait(fullname=fd.formdata.getvalue('fullname'), cursor=self.cursor) trait2Url = Trait2.genHTML(dispFromDatabase=1) except: trait2Url = self.xAxisLabel if (_vals and trait1_data): if len(_vals) != len(trait1_data): errors = HT.Blockquote(HT.Font('Error: ',color='red'),HT.Font('The number of traits are inconsistent, Program quit',color='black')) errors.__setattr__("class","subtitle") TD_LR.append(errors) self.dict['body'] = str(TD_LR) return for i in range(len(_vals)): if _vals[i]!= None and trait1_data[i]!= None: dataX.append(_vals[i]) dataY.append(trait1_data[i]) strainName = strainlist[i] if self.showstrains: dataZ.append(webqtlUtil.genShortStrainName(RISet=fd.RISet, input_strainName=strainName)) else: heading = "Correlation Plot" detail = ['Empty Dataset for sample correlation, please check your data.'] self.error(heading=heading,detail=detail) return #XZ: We have gotten all data for both traits. if len(dataX) >= self.corrMinInformative: if self.rankOrder == 0: rankPrimary = 0 rankSecondary = 1 else: rankPrimary = 1 rankSecondary = 0 lineColor = self.setLineColor(); symbolColor = self.setSymbolColor(); idColor = self.setIdColor(); c = pid.PILCanvas(size=(self.plotSize, self.plotSize*0.90)) data_coordinate = Plot.plotXY(canvas=c, dataX=dataX, dataY=dataY, rank=rankPrimary, dataLabel = dataZ, labelColor=pid.black, lineSize=self.lineSize, lineColor=lineColor, idColor=idColor, idFont=self.idFont, idSize=self.idSize, symbolColor=symbolColor, symbolType=self.symbol, filled=self.filled, symbolSize=self.symbolSize, XLabel=self.xAxisLabel, connectdot=0, YLabel=self.yAxisLabel, title='', fitcurve=self.showline, displayR =1, offset= (90, self.plotSize/20, self.plotSize/10, 90), showLabel = self.showIdentifiers) if rankPrimary == 1: dataXlabel, dataYlabel = webqtlUtil.calRank(xVals=dataX, yVals=dataY, N=len(dataX)) else: dataXlabel, dataYlabel = dataX, dataY gifmap1 = HT.Map(name='CorrelationPlotImageMap1') for i, item in enumerate(data_coordinate): one_rect_coordinate = "%d, %d, %d, %d" % (item[0] - 5, item[1] - 5, item[0] + 5, item[1] + 5) if isTissueCorr: one_rect_title = "%s (%s, %s)" % (fullTissueName[i], dataXlabel[i], dataYlabel[i]) else: one_rect_title = "%s (%s, %s)" % (dataZ[i], dataXlabel[i], dataYlabel[i]) gifmap1.areas.append(HT.Area(shape='rect',coords=one_rect_coordinate, title=one_rect_title) ) filename= webqtlUtil.genRandStr("XY_") c.save(webqtlConfig.IMGDIR+filename, format='gif') img1=HT.Image('/image/'+filename+'.gif',border=0, usemap='#CorrelationPlotImageMap1') mainForm_1 = HT.Form( cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), enctype='multipart/form-data', name='showDatabase', submit=HT.Input(type='hidden')) hddn = {'FormID':'showDatabase','ProbeSetID':'_','database':'_','CellID':'_','RISet':fd.RISet, 'ProbeSetID2':'_', 'database2':'_', 'CellID2':'_', 'allstrainlist':string.join(fd.strainlist, " "), 'traitList': fd.formdata.getvalue("traitList")} if fd.incparentsf1: hddn['incparentsf1'] = 'ON' for key in hddn.keys(): mainForm_1.append(HT.Input(name=key, value=hddn[key], type='hidden')) if isSampleCorr: mainForm_1.append(HT.P(), HT.Blockquote(HT.Strong('X axis:'),HT.Blockquote(trait2Url),HT.Strong('Y axis:'),HT.Blockquote(trait1Url), style='width: %spx;' % self.plotSize, wrap="hard")) graphForm = HT.Form(cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), name='MDP_Form',submit=HT.Input(type='hidden')) graph_hddn = self.setHiddenParameters(fd, rankPrimary) webqtlUtil.exportData(graph_hddn, fd.allTraitData) #XZ: This is necessary to replot with different groups of strains for key in graph_hddn.keys(): graphForm.append(HT.Input(name=key, value=graph_hddn[key], type='hidden')) options = self.createOptionsMenu(fd, mdpchoice) if (self.showOptions == '0'): showOptionsButton = HT.Input(type='button' ,name='optionsButton',value='Hide Options', onClick="showHideOptions();", Class="button") else: showOptionsButton = HT.Input(type='button' ,name='optionsButton',value='Show Options', onClick="showHideOptions();", Class="button") # updated by NL: 12-07-2011 add variables for tissue abbreviation page if isTissueCorr: graphForm.append(HT.Input(name='shortTissueName', value='', type='hidden')) graphForm.append(HT.Input(name='fullTissueName', value='', type='hidden')) shortTissueNameStr=string.join(dataZ, ",") fullTissueNameStr=string.join(fullTissueName, ",") tissueAbbrButton=HT.Input(type='button' ,name='tissueAbbrButton',value='Show Abbreviations', onClick="showTissueAbbr('MDP_Form','%s','%s')" % (shortTissueNameStr,fullTissueNameStr), Class="button") graphForm.append(showOptionsButton,' ',tissueAbbrButton, HT.BR(), HT.BR()) else: graphForm.append(showOptionsButton, HT.BR(), HT.BR()) graphForm.append(options, HT.BR()) graphForm.append(HT.HR(), HT.BR(), HT.P()) TD_LR.append(plotHeading, HT.BR(),graphForm, HT.BR(), gifmap1, HT.P(), img1, HT.P(), mainForm_1) TD_LR.append(HT.BR(), HT.HR(color="grey", size=5, width="100%")) c = pid.PILCanvas(size=(self.plotSize, self.plotSize*0.90)) data_coordinate = Plot.plotXY(canvas=c, dataX=dataX, dataY=dataY, rank=rankSecondary, dataLabel = dataZ, labelColor=pid.black,lineColor=lineColor, lineSize=self.lineSize, idColor=idColor, idFont=self.idFont, idSize=self.idSize, symbolColor=symbolColor, symbolType=self.symbol, filled=self.filled, symbolSize=self.symbolSize, XLabel=self.xAxisLabel, connectdot=0, YLabel=self.yAxisLabel,title='', fitcurve=self.showline, displayR =1, offset= (90, self.plotSize/20, self.plotSize/10, 90), showLabel = self.showIdentifiers) if rankSecondary == 1: dataXlabel, dataYlabel = webqtlUtil.calRank(xVals=dataX, yVals=dataY, N=len(dataX)) else: dataXlabel, dataYlabel = dataX, dataY gifmap2 = HT.Map(name='CorrelationPlotImageMap2') for i, item in enumerate(data_coordinate): one_rect_coordinate = "%d, %d, %d, %d" % (item[0] - 6, item[1] - 6, item[0] + 6, item[1] + 6) if isTissueCorr: one_rect_title = "%s (%s, %s)" % (fullTissueName[i], dataXlabel[i], dataYlabel[i]) else: one_rect_title = "%s (%s, %s)" % (dataZ[i], dataXlabel[i], dataYlabel[i]) gifmap2.areas.append(HT.Area(shape='rect',coords=one_rect_coordinate, title=one_rect_title) ) filename= webqtlUtil.genRandStr("XY_") c.save(webqtlConfig.IMGDIR+filename, format='gif') img2=HT.Image('/image/'+filename+'.gif',border=0, usemap='#CorrelationPlotImageMap2') mainForm_2 = HT.Form( cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), enctype='multipart/form-data', name='showDatabase2', submit=HT.Input(type='hidden')) hddn = {'FormID':'showDatabase2','ProbeSetID':'_','database':'_','CellID':'_','RISet':fd.RISet, 'ProbeSetID2':'_', 'database2':'_', 'CellID2':'_', 'allstrainlist':string.join(fd.strainlist, " "), 'traitList': fd.formdata.getvalue("traitList")} if fd.incparentsf1: hddn['incparentsf1'] = 'ON' for key in hddn.keys(): mainForm_2.append(HT.Input(name=key, value=hddn[key], type='hidden')) if isSampleCorr: mainForm_2.append(HT.P(), HT.Blockquote(HT.Strong('X axis:'),HT.Blockquote(trait2Url),HT.Strong('Y axis:'),HT.Blockquote(trait1Url), style='width:%spx;' % self.plotSize)) TD_LR.append(HT.BR(), HT.P()) TD_LR.append('\n', gifmap2, HT.P(), HT.P(), img2, HT.P(), mainForm_2) self.dict['body'] = str(TD_LR) else: heading = "Correlation Plot" detail = ['Fewer than %d strain data were entered for %s data set. No statitical analysis has been attempted.' % (self.corrMinInformative, fd.RISet)] self.error(heading=heading,detail=detail) return
def GenReport(self, fd, _genotype, _strains, _vals, _vars= []): 'Create an HTML division which reports any loci which are significantly associated with the submitted trait data.' if webqtlUtil.ListNotNull(_vars): qtlresults = _genotype.regression(strains = _strains, trait = _vals, variance = _vars, control = self.controlLocus) LRSArray = _genotype.permutation(strains = _strains, trait = _vals, variance = _vars, nperm=fd.nperm) else: qtlresults = _genotype.regression(strains = _strains, trait = _vals, control = self.controlLocus) LRSArray = _genotype.permutation(strains = _strains, trait = _vals,nperm=fd.nperm) myCanvas = pid.PILCanvas(size=(400,300)) #plotBar(myCanvas,10,10,390,290,LRSArray,XLabel='LRS',YLabel='Frequency',title=' Histogram of Permutation Test',identification=fd.identification) Plot.plotBar(myCanvas, LRSArray,XLabel='LRS',YLabel='Frequency',title=' Histogram of Permutation Test') filename= webqtlUtil.genRandStr("Reg_") myCanvas.save(webqtlConfig.IMGDIR+filename, format='gif') img=HT.Image('/image/'+filename+'.gif',border=0,alt='Histogram of Permutation Test') if fd.suggestive == None: fd.suggestive = LRSArray[int(fd.nperm*0.37-1)] else: fd.suggestive = float(fd.suggestive) if fd.significance == None: fd.significance = LRSArray[int(fd.nperm*0.95-1)] else: fd.significance = float(fd.significance) ######################################### # Permutation Graph ######################################### permutationHeading = HT.Paragraph('Histogram of Permutation Test') permutationHeading.__setattr__("class","title") lrs = HT.Blockquote('Total of %d permutations' % fd.nperm,HT.P(),'Suggestive LRS = %2.2f' % LRSArray[int(fd.nperm*0.37-1)],\ HT.BR(),'Significant LRS = %2.2f' % LRSArray[int(fd.nperm*0.95-1)],HT.BR(),'Highly Significant LRS =%2.2f' % LRSArray[int(fd.nperm*0.99-1)]) permutation = HT.TableLite() permutation.append(HT.TR(HT.TD(img)),HT.TR(HT.TD(lrs))) _dispAllLRS = 0 if fd.formdata.getvalue('displayAllLRS'): _dispAllLRS = 1 qtlresults2 = [] if _dispAllLRS: filtered = qtlresults[:] else: filtered = filter(lambda x, y=fd.suggestive: x.lrs > y, qtlresults) if len(filtered) == 0: qtlresults2 = qtlresults[:] qtlresults2.sort() filtered = qtlresults2[-10:] ######################################### # Marker regression report ######################################### locusFormName = webqtlUtil.genRandStr("fm_") locusForm = HT.Form(cgi = os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), \ enctype='multipart/form-data', name=locusFormName, submit=HT.Input(type='hidden')) hddn = {'FormID':'showDatabase','ProbeSetID':'_','database':fd.RISet+"Geno",'CellID':'_', \ 'RISet':fd.RISet, 'incparentsf1':'on'} for key in hddn.keys(): locusForm.append(HT.Input(name=key, value=hddn[key], type='hidden')) regressionHeading = HT.Paragraph('Marker Regression Report') regressionHeading.__setattr__("class","title") if qtlresults2 != []: report = HT.Blockquote(HT.Font('No association ',color="#FF0000"),HT.Font('with a likelihood ratio statistic greater than %3.1f was found. Here are the top 10 LRSs.' % fd.suggestive,color="#000000")) else: report = HT.Blockquote('The following loci in the %s data set have associations with the above trait data.\n' % fd.RISet, HT.P()) report.__setattr__("class","normalsize") fpText = open('%s.txt' % (webqtlConfig.TMPDIR+filename), 'wb') textUrl = HT.Href(text = 'Download', url= '/tmp/'+filename+'.txt', target = "_blank", Class='fs12 fwn') bottomInfo = HT.Paragraph(textUrl, ' result in tab-delimited text format.', HT.BR(), HT.BR(),'LRS values marked with',HT.Font(' * ',color="red"), 'are greater than the significance threshold (specified by you or by permutation test). ' , HT.BR(), HT.BR(), HT.Strong('Additive Effect'), ' is half the difference in the mean phenotype of all cases that are homozygous for one parental allel at this marker minus the mean of all cases that are homozygous for the other parental allele at this marker. ','In the case of %s strains, for example,' % fd.RISet,' A positive additive effect indicates that %s alleles increase trait values. Negative additive effect indicates that %s alleles increase trait values.'% (fd.ppolar,fd.mpolar),Class="fs12 fwn") c1 = HT.TD('LRS',Class="fs14 fwb ffl b1 cw cbrb") c2 = HT.TD('Chr',Class="fs14 fwb ffl b1 cw cbrb") c3 = HT.TD('Mb',Class="fs14 fwb ffl b1 cw cbrb") c4 = HT.TD('Locus',Class="fs14 fwb ffl b1 cw cbrb") c5 = HT.TD('Additive Effect',Class="fs14 fwb ffl b1 cw cbrb") fpText.write('LRS\tChr\tMb\tLocus\tAdditive Effect\n') hr = HT.TR(c1, c2, c3, c4, c5) tbl = HT.TableLite(border=0, width="90%", cellpadding=0, cellspacing=0, Class="collap") tbl.append(hr) for ii in filtered: #add by NL 06-22-2011: set LRS to 460 when LRS is infinite, if ii.lrs==float('inf') or ii.lrs>webqtlConfig.MAXLRS: LRS=webqtlConfig.MAXLRS #maximum LRS value else: LRS=ii.lrs fpText.write('%2.3f\t%s\t%s\t%s\t%2.3f\n' % (LRS, ii.locus.chr, ii.locus.Mb, ii.locus.name, ii.additive)) if LRS > fd.significance: c1 = HT.TD('%3.3f*' % LRS, Class="fs13 b1 cbw cr") else: c1 = HT.TD('%3.3f' % LRS,Class="fs13 b1 cbw c222") tbl.append(HT.TR(c1, HT.TD(ii.locus.chr,Class="fs13 b1 cbw c222"), HT.TD(ii.locus.Mb,Class="fs13 b1 cbw c222"), HT.TD(HT.Href(text=ii.locus.name, url = "javascript:showTrait('%s','%s');" % (locusFormName, ii.locus.name), Class='normalsize'), Class="fs13 b1 cbw c222"), HT.TD('%3.3f' % ii.additive,Class="fs13 b1 cbw c222"),bgColor='#eeeeee')) locusForm.append(tbl) tbl2 = HT.TableLite(border=0, cellspacing=0, cellpadding=0,width="90%") tbl2.append(HT.TR(HT.TD(bottomInfo))) rv=HT.TD(permutationHeading,HT.Center(permutation),regressionHeading,report, HT.Center(locusForm,HT.P(),tbl2,HT.P()),width='55%',valign='top', bgColor='#eeeeee') return rv
def __init__(self,fd): templatePage.__init__(self, fd) if not self.openMysql(): return if not fd.genotype: fd.readGenotype() self.searchResult = fd.formdata.getvalue('searchResult') if not self.searchResult: templatePage.__init__(self, fd) heading = 'QTL Heatmap' detail = ['You need to select at least two traits in order to generate correlation matrix.'] self.error(heading=heading,detail=detail) return if type("1") == type(self.searchResult): self.searchResult = string.split(self.searchResult,'\t') if self.searchResult: if len(self.searchResult) > webqtlConfig.MAXCORR: heading = 'QTL Heatmap' detail = ['In order to display the QTL heat map properly, do not select more than %d traits for analysis.' % webqtlConfig.MAXCORR] self.error(heading=heading,detail=detail) return traitList = [] traitDataList = [] for item in self.searchResult: thisTrait = webqtlTrait(fullname=item, cursor=self.cursor) thisTrait.retrieveInfo() thisTrait.retrieveData(fd.strainlist) traitList.append(thisTrait) traitDataList.append(thisTrait.exportData(fd.strainlist)) else: heading = 'QTL Heatmap' detail = [HT.Font('Error : ',color='red'),HT.Font('Error occurs while retrieving data from database.',color='black')] self.error(heading=heading,detail=detail) return self.colorScheme = fd.formdata.getvalue('colorScheme') if not self.colorScheme: self.colorScheme = '1' self.dict['title'] = 'QTL heatmap' NNN = len(traitList) if NNN == 0: heading = "QTL Heatmap" detail = ['No trait was selected for %s data set. No QTL heatmap was generated.' % fd.RISet] self.error(heading=heading,detail=detail) return elif NNN < 2: templatePage.__init__(self, fd) heading = 'QTL Heatmap' detail = ['You need to select at least two traits in order to generate QTL heatmap.'] self.error(heading=heading,detail=detail) return else: #XZ: It's necessory to define canvas here canvas = pid.PILCanvas(size=(80+NNN*20,880)) names = map(webqtlTrait.displayName, traitList) self.targetDescriptionChecked = fd.formdata.getvalue('targetDescriptionCheck', '') #XZ, 7/29/2009: create trait display and find max strWidth strWidth = 0 for j in range(len(names)): thisTrait = traitList[j] if self.targetDescriptionChecked: if thisTrait.db.type == 'ProbeSet': if thisTrait.probe_target_description: names[j] += ' [%s at Chr %s @ %2.3fMB, %s]' % (thisTrait.symbol, thisTrait.chr, thisTrait.mb, thisTrait.probe_target_description) else: names[j] += ' [%s at Chr %s @ %2.3fMB]' % (thisTrait.symbol, thisTrait.chr, thisTrait.mb) elif thisTrait.db.type == 'Geno': names[j] += ' [Chr %s @ %2.3fMB]' % (thisTrait.chr, thisTrait.mb) elif thisTrait.db.type == 'Publish': if thisTrait.abbreviation: names[j] += ' [%s]' % (thisTrait.abbreviation) else: pass else: pass i = canvas.stringWidth(names[j],font=self.labelFont) if i > strWidth: strWidth = i width = NNN*20 xoffset = 40 yoffset = 40 cellHeight = 3 nLoci = reduce(lambda x,y: x+y, map(lambda x: len(x),fd.genotype),0) if nLoci > 2000: cellHeight = 1 elif nLoci > 1000: cellHeight = 2 elif nLoci < 200: cellHeight = 10 else: pass pos = range(NNN) neworder = [] BWs = Plot.BWSpectrum() colors100 = Plot.colorSpectrum() colors = Plot.colorSpectrum(130) finecolors = Plot.colorSpectrum(250) colors100.reverse() colors.reverse() finecolors.reverse() scaleFont=pid.Font(ttf="tahoma",size=10,bold=0) self.clusterChecked = fd.formdata.getvalue('clusterCheck', '') if not self.clusterChecked: #XZ: this part is for original order for i in range(len(names)): neworder.append((xoffset+20*(i+1), i)) canvas = pid.PILCanvas(size=(80+NNN*20+240,80+ self.topHeight +5+5+strWidth+nLoci*cellHeight+80+20*cellHeight)) self.drawTraitNameBottom(canvas,names,yoffset,neworder,strWidth) else: #XZ: this part is to cluster traits self.topHeight = 400 canvas = pid.PILCanvas(size=(80+NNN*20+240,80+ self.topHeight +5+5+strWidth+nLoci*cellHeight+80+20*cellHeight)) corArray = [([0] * (NNN))[:] for i in range(NNN)] nnCorr = len(fd.strainlist) #XZ, 08/04/2009: I commented out pearsonArray, spearmanArray for i, thisTrait in enumerate(traitList): names1 = [thisTrait.db.name, thisTrait.name, thisTrait.cellid] for j, thisTrait2 in enumerate(traitList): names2 = [thisTrait2.db.name, thisTrait2.name, thisTrait2.cellid] if j < i: corr,nOverlap = webqtlUtil.calCorrelation(traitDataList[i],traitDataList[j],nnCorr) if (1-corr) < 0: distance = 0.0 else: distance = 1-corr corArray[i][j] = distance corArray[j][i] = distance elif j == i: corArray[i][j] = 0.0 else: pass #XZ, 7/29/2009: The parameter d has info of cluster (group member and distance). The format of d is tricky. Print it out to see it's format. d = slink.slink(corArray) #XZ, 7/29/2009: Attention: The 'neworder' is changed by the 'draw' function #XZ, 7/30/2009: Only toppos[1][0] and top[1][1] are used later. Then what toppos[0] is used for? toppos = self.draw(canvas,names,d,xoffset,yoffset,neworder) self.drawTraitNameTop(canvas,names,yoffset,neworder,strWidth) #XZ, 7/29/2009: draw the top vertical line canvas.drawLine(toppos[1][0],toppos[1][1],toppos[1][0],yoffset) #XZ: draw string 'distance = 1-r' canvas.drawString('distance = 1-r',neworder[-1][0] + 50, self.topHeight*3/4,font=self.labelFont,angle=90) #draw Scale scaleFont=pid.Font(ttf="tahoma",size=10,bold=0) x = neworder[-1][0] canvas.drawLine(x+5, self.topHeight+yoffset, x+5, yoffset, color=pid.black) y = 0 while y <=2: canvas.drawLine(x+5, self.topHeight*y/2.0+yoffset, x+10, self.topHeight*y/2.0+yoffset) canvas.drawString('%2.1f' % (2-y), x+12, self.topHeight*y/2.0+yoffset, font=scaleFont) y += 0.5 chrname = 0 chrnameFont=pid.Font(ttf="tahoma",size=24,bold=0) Ncol = 0 gifmap = HT.Map(name='traitMap') nearestMarkers = self.getNearestMarker(traitList, fd.genotype) # import cPickle sessionfile = fd.formdata.getvalue("session") if sessionfile: fp = open(os.path.join(webqtlConfig.TMPDIR, sessionfile + '.session'), 'rb') permData = cPickle.load(fp) fp.close() else: permData = {} #XZ, 7/31/2009: This for loop is to generate the heatmap #XZ: draw trait by trait instead of marker by marker for order in neworder: #startHeight = 40+400+5+5+strWidth startHeight = self.topHeight + 40+5+5+strWidth startWidth = order[0]-5 if Ncol and Ncol % 5 == 0: drawStartPixel = 8 else: drawStartPixel = 9 tempVal = traitDataList[order[1]] _vals = [] _strains = [] for i in range(len(fd.strainlist)): if tempVal[i] != None: _strains.append(fd.strainlist[i]) _vals.append(tempVal[i]) qtlresult = fd.genotype.regression(strains = _strains, trait = _vals) if sessionfile: LRSArray = permData[str(traitList[order[1]])] else: LRSArray = fd.genotype.permutation(strains = _strains, trait = _vals, nperm = 1000) permData[str(traitList[order[1]])] = LRSArray sugLRS = LRSArray[369] sigLRS = LRSArray[949] prechr = 0 chrstart = 0 nearest = nearestMarkers[order[1]] midpoint = [] for item in qtlresult: if item.lrs > webqtlConfig.MAXLRS: adjustlrs = webqtlConfig.MAXLRS else: adjustlrs = item.lrs if item.locus.chr != prechr: if prechr: canvas.drawRect(startWidth-drawStartPixel, startHeight, startWidth+10, startHeight+3,edgeColor=pid.white, edgeWidth=0, fillColor=pid.white) startHeight+= 3 if not chrname: canvas.drawString(prechr,xoffset-20,(chrstart+startHeight)/2,font = chrnameFont,color=pid.dimgray) prechr = item.locus.chr chrstart = startHeight if self.colorScheme == '0': if adjustlrs <= sugLRS: colorIndex = int(65*adjustlrs/sugLRS) else: colorIndex = int(65 + 35*(adjustlrs-sugLRS)/(sigLRS-sugLRS)) if colorIndex > 99: colorIndex = 99 colorIndex = colors100[colorIndex] elif self.colorScheme == '1': sugLRS = LRSArray[369]/2.0 if adjustlrs <= sugLRS: colorIndex = BWs[20+int(50*adjustlrs/sugLRS)] else: if item.additive > 0: colorIndex = int(80 + 50*(adjustlrs-sugLRS)/(sigLRS-sugLRS)) else: colorIndex = int(50 - 50*(adjustlrs-sugLRS)/(sigLRS-sugLRS)) if colorIndex > 129: colorIndex = 129 if colorIndex < 0: colorIndex = 0 colorIndex = colors[colorIndex] elif self.colorScheme == '2': if item.additive > 0: colorIndex = int(150 + 100*(adjustlrs/sigLRS)) else: colorIndex = int(100 - 100*(adjustlrs/sigLRS)) if colorIndex > 249: colorIndex = 249 if colorIndex < 0: colorIndex = 0 colorIndex = finecolors[colorIndex] else: colorIndex = pid.white if startHeight > 1: canvas.drawRect(startWidth-drawStartPixel, startHeight, startWidth+10, startHeight+cellHeight,edgeColor=colorIndex, edgeWidth=0, fillColor=colorIndex) else: canvas.drawLine(startWidth-drawStartPixel, startHeight, startWidth+10, startHeight, Color=colorIndex) if item.locus.name == nearest: midpoint = [startWidth,startHeight-5] startHeight+=cellHeight #XZ, map link to trait name and band COORDS = "%d,%d,%d,%d" %(startWidth-drawStartPixel,self.topHeight+40,startWidth+10,startHeight) HREF = "javascript:showDatabase2('%s','%s','%s');" % (traitList[order[1]].db.name, traitList[order[1]].name, traitList[order[1]].cellid) Areas = HT.Area(shape='rect',coords=COORDS,href=HREF, title='%s' % names[order[1]]) gifmap.areas.append(Areas) if midpoint: traitPixel = ((midpoint[0],midpoint[1]),(midpoint[0]-6,midpoint[1]+12),(midpoint[0]+6,midpoint[1]+12)) canvas.drawPolygon(traitPixel,edgeColor=pid.black,fillColor=pid.orange,closed=1) if not chrname: canvas.drawString(prechr,xoffset-20,(chrstart+startHeight)/2,font = chrnameFont,color=pid.dimgray) chrname = 1 Ncol += 1 #draw Spectrum startSpect = neworder[-1][0] + 30 startHeight = self.topHeight + 40+5+5+strWidth if self.colorScheme == '0': for i in range(100): canvas.drawLine(startSpect+i,startHeight+20,startSpect+i,startHeight+40,color=colors100[i]) scaleFont=pid.Font(ttf="tahoma",size=10,bold=0) canvas.drawLine(startSpect,startHeight+45,startSpect,startHeight+39,color=pid.black) canvas.drawString('LRS = 0',startSpect,startHeight+55,font=scaleFont) canvas.drawLine(startSpect+64,startHeight+45,startSpect+64,startHeight+39,color=pid.black) canvas.drawString('Suggestive LRS',startSpect+64,startHeight+55,font=scaleFont) canvas.drawLine(startSpect+99,startHeight+45,startSpect+99,startHeight+39,color=pid.black) canvas.drawString('Significant LRS',startSpect+105,startHeight+40,font=scaleFont) elif self.colorScheme == '1': for i in range(50): canvas.drawLine(startSpect+i,startHeight,startSpect+i,startHeight+40,color=BWs[20+i]) for i in range(50,100): canvas.drawLine(startSpect+i,startHeight,startSpect+i,startHeight+20,color=colors[100-i]) canvas.drawLine(startSpect+i,startHeight+20,startSpect+i,startHeight+40,color=colors[30+i]) canvas.drawLine(startSpect,startHeight+45,startSpect,startHeight+39,color=pid.black) canvas.drawString('LRS = 0',startSpect,startHeight+60,font=scaleFont) canvas.drawLine(startSpect+50,startHeight+45,startSpect+50,startHeight+39,color=pid.black) canvas.drawString('0.5*Suggestive LRS',startSpect+50,startHeight+ 60,font=scaleFont) canvas.drawLine(startSpect+99,startHeight+45,startSpect+99,startHeight+39,color=pid.black) canvas.drawString('Significant LRS',startSpect+105,startHeight+50,font=scaleFont) textFont=pid.Font(ttf="verdana",size=18,bold=0) canvas.drawString('%s +' % fd.ppolar,startSpect+120,startHeight+ 35,font=textFont,color=pid.red) canvas.drawString('%s +' % fd.mpolar,startSpect+120,startHeight+ 15,font=textFont,color=pid.blue) elif self.colorScheme == '2': for i in range(100): canvas.drawLine(startSpect+i,startHeight,startSpect+i,startHeight+20,color=finecolors[100-i]) canvas.drawLine(startSpect+i,startHeight+20,startSpect+i,startHeight+40,color=finecolors[150+i]) canvas.drawLine(startSpect,startHeight+45,startSpect,startHeight+39,color=pid.black) canvas.drawString('LRS = 0',startSpect,startHeight+60,font=scaleFont) canvas.drawLine(startSpect+99,startHeight+45,startSpect+99,startHeight+39,color=pid.black) canvas.drawString('Significant LRS',startSpect+105,startHeight+50,font=scaleFont) textFont=pid.Font(ttf="verdana",size=18,bold=0) canvas.drawString('%s +' % fd.ppolar,startSpect+120,startHeight+ 35,font=textFont,color=pid.red) canvas.drawString('%s +' % fd.mpolar,startSpect+120,startHeight+ 15,font=textFont,color=pid.blue) filename= webqtlUtil.genRandStr("Heatmap_") canvas.save(webqtlConfig.IMGDIR+filename, format='png') img2=HT.Image('/image/'+filename+'.png',border=0,usemap='#traitMap') imgUrl = 'Right-click or control-click on the link to download this graph as a <a href="/image/%s.png" class="normalsize" target="_blank">PNG file</a>' % filename form = HT.Form(cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), enctype='multipart/form-data', name='showDatabase', submit=HT.Input(type='hidden')) hddn = {'FormID':'showDatabase','ProbeSetID':'_','database':fd.RISet+"Geno",'CellID':'_','RISet':fd.RISet,'searchResult':string.join(self.searchResult,'\t')} if fd.incparentsf1: hddn['incparentsf1']='ON' for key in hddn.keys(): form.append(HT.Input(name=key, value=hddn[key], type='hidden')) heatmap = HT.Input(type='button' ,name='mintmap',value='Redraw QTL Heatmap', onClick="databaseFunc(this.form,'heatmap');",Class="button") spects = {'0':'Single Spectrum','1':'Grey + Blue + Red','2':'Blue + Red'} schemeMenu = HT.Select(name='colorScheme') schemeMenu.append(('Single Spectrum',0)) schemeMenu.append(('Grey + Blue + Red',1)) schemeMenu.append(('Blue + Red',2)) schemeMenu.selected.append(spects[self.colorScheme]) clusterCheck= HT.Input(type='checkbox', Class='checkbox', name='clusterCheck',checked=0) targetDescriptionCheck = HT.Input(type='checkbox', Class='checkbox', name='targetDescriptionCheck',checked=0) form.append(gifmap,schemeMenu, heatmap, HT.P(), clusterCheck, ' Cluster traits ', targetDescriptionCheck, ' Add description', HT.P(),img2, HT.P(), imgUrl) if not sessionfile: filename = webqtlUtil.generate_session() webqtlUtil.dump_session(permData, os.path.join(webqtlConfig.TMPDIR, filename +'.session')) sessionfile=filename form.append(HT.Input(name='session', value=sessionfile, type='hidden')) heatmapHelp = HT.Input(type='button' ,name='heatmapHelpButton',value='Info', onClick="openNewWin('/heatmap.html');",Class="button") heatmapHeading = HT.Paragraph('QTL Heatmap ', heatmapHelp, Class="title") TD_LR = HT.TD(colspan=2,height=200,width="100%",bgColor='#eeeeee') TD_LR.append(heatmapHeading, HT.P(),HT.P(),HT.P(),HT.P(),HT.P(),form) self.dict['body'] = str(TD_LR)
def insertUpdateCheck(self, fd, warning= ""): self.dict['title'] = "%s GeneWiki Entry for %s" % (self.action.title(), self.symbol) #mailsrch = re.compile('([\w\-][\w\-\.]*@[\w\-][\w\-\.]+[a-zA-Z]{1,4})([\s,;])*') mailsrch = re.compile('([\w\-][\w\-\.]*)@([\w\-\.]+)\.([a-zA-Z]{1,4})([\s,;])*') httpsrch = re.compile('((?:http|ftp|gopher|file)://(?:[^ \n\r<\)]+))([\s,;])*') if not self.comment or not self.email: heading = self.dict['title'] detail = ["Please don't leave text field or email field empty."] self.error(heading=heading,detail=detail,error="Error") return if self.action == 'update' and not self.reason: heading = self.dict['title'] detail = ["Please submit your reason for this modification."] self.error(heading=heading,detail=detail,error="Error") return if len(self.comment) >500: heading = self.dict['title'] detail = ["Your entry is more than 500 characters."] self.error(heading=heading,detail=detail,error="Error") return if self.email and re.sub(mailsrch, "", self.email) != "": heading = self.dict['title'] detail = ["The format of your email address is incorrect."] self.error(heading=heading,detail=detail,error="Error") return if self.weburl == "http://": self.weburl = "" if self.weburl and re.sub(httpsrch, "", self.weburl) != "": heading = self.dict['title'] detail = ["The format of web resource link is incorrect."] self.error(heading=heading,detail=detail,error="Error") return if self.pubmedid: try: test = map(int, string.split(self.pubmedid)) except: heading = self.dict['title'] detail = ["PubMed IDs can only be integers."] self.error(heading=heading,detail=detail,error="Error") return form = HT.Form(cgi= os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), name='addgenerif',submit=HT.Input(type='hidden')) recordInfoTable = HT.TableLite(border=0, cellspacing=1, cellpadding=5,align="center") addButton = HT.Input(type='submit',name='submit', value='%s GeneWiki Entry' % self.action.title(),Class="button") hddn = {'curStatus':'insertResult', 'FormID':'geneWiki', 'symbol':self.symbol, 'comment':self.comment, 'email':self.email, 'species':self.species, 'action':self.action, 'reason':self.reason} if self.Id: hddn['Id']=self.Id formBody = HT.TableLite() formBody.append(HT.TR( HT.TD(HT.Strong("Species: ")), HT.TD(width=10), HT.TD(string.split(self.species, ":")[0]) )) if self.pubmedid: try: formBody.append(HT.TR( HT.TD(HT.Strong("PubMed IDs: ")), HT.TD(width=10), HT.TD(self.pubmedid) )) hddn['pubmedid'] = self.pubmedid except: pass if self.weburl: try: formBody.append(HT.TR( HT.TD(HT.Strong("Web URL: ")), HT.TD(width=10), HT.TD(HT.Href(text=self.weburl, url=self.weburl, Class='fwn')) )) hddn['weburl'] = self.weburl except: pass formBody.append(HT.TR( HT.TD(HT.Strong("Gene Notes: ")), HT.TD(width=10), HT.TD(self.comment) )) formBody.append(HT.TR( HT.TD(HT.Strong("Email: ")), HT.TD(width=10), HT.TD(self.email) )) if self.initial: formBody.append(HT.TR( HT.TD(HT.Strong("Initial: ")), HT.TD(width=10), HT.TD(self.initial) )) hddn['initial'] = self.initial if self.genecategory: cTD = HT.TD() if type(self.genecategory) == type(""): self.genecategory = string.split(self.genecategory) self.cursor.execute("Select Id, Name from GeneCategory where Id in (%s) order by Name " % string.join(self.genecategory, ', ')) results = self.cursor.fetchall() for item in results: cTD.append(item[1], HT.BR()) formBody.append(HT.TR( HT.TD(HT.Strong("Category: ")), HT.TD(width=10), cTD )) hddn['genecategory'] = string.join(self.genecategory, " ") formBody.append(HT.TR( HT.TD( HT.BR(), HT.BR(), HT.Div("For security reasons, enter the code (case insensitive) in the image below to finalize your submission"), HT.BR(), addButton, HT.Input(type="password", size = 25, name="password"), colspan=3) )) code = webqtlUtil.genRandStr(length=5, chars="abcdefghkmnpqrstuvwxyzABCDEFGHJKMNPQRSTUVWXYZ23456789") filename= webqtlUtil.genRandStr("Sec_") hddn['filename'] = filename securityCanvas = pid.PILCanvas(size=(300,100)) Plot.plotSecurity(securityCanvas, text=code) os.system("touch %s_.%s" % (os.path.join(webqtlConfig.IMGDIR,filename), code)) securityCanvas.save(os.path.join(webqtlConfig.IMGDIR,filename), format='png') formBody.append(HT.TR( HT.TD(HT.Image("/image/"+filename+".png"), colspan=3) )) hddn['filename'] = filename TD_LR = HT.TD(valign="top", bgcolor="#eeeeee") title = HT.Paragraph("%s GeneWiki Entry for %s" % (self.action.title(), self.symbol), Class="title") form.append(HT.P(), HT.Blockquote(formBody)) for key in hddn.keys(): form.append(HT.Input(name=key, value=hddn[key], type='hidden')) TD_LR.append(title, HT.Blockquote(warning, Id="red"), form) self.dict['body'] = TD_LR
def __init__(self, fd): LRSFullThresh = 30 LRSInteractThresh = 25 maxPlotSize = 1000 mainfmName = webqtlUtil.genRandStr("fm_") templatePage.__init__(self, fd) self.dict['title'] = 'Pair-Scan Plot' if not self.openMysql(): return TD_LR = HT.TD(height=200,width="100%",bgColor='#eeeeee') vals = fd.formdata.getvalue('idata') vals = map(float,string.split(vals,',')) strains = fd.formdata.getvalue('istrain') strains = string.split(strains,',') Chr_A = int(fd.formdata.getvalue('Chr_A')) Chr_B = int(fd.formdata.getvalue('Chr_B')) if len(vals) > webqtlConfig.KMININFORMATIVE: d = direct.exhaust(webqtlConfig.GENODIR, vals, strains, fd.RISet, Chr_A, Chr_B)#XZ, 08/14/2008: add module name webqtlConfig chrsInfo = d[2] longerChrLen = max(chrsInfo[Chr_A][0], chrsInfo[Chr_B][0]) shorterChrlen = min(chrsInfo[Chr_A][0], chrsInfo[Chr_B][0]) plotHeight = int(chrsInfo[Chr_B][0]*maxPlotSize/longerChrLen) plotWidth = int(chrsInfo[Chr_A][0]*maxPlotSize/longerChrLen) xLeftOffset = 200 xRightOffset = 40 yTopOffset = 40 yBottomOffset = 200 colorAreaWidth = 120 canvasHeight = plotHeight + yTopOffset + yBottomOffset canvasWidth = plotWidth + xLeftOffset + xRightOffset + colorAreaWidth canvas = pid.PILCanvas(size=(canvasWidth,canvasHeight)) plotScale = plotHeight/chrsInfo[Chr_B][0] rectInfo = d[1] finecolors = Plot.colorSpectrum(250) finecolors.reverse() #draw LRS Full for item in rectInfo: LRSFull,LRSInteract,LRSa,LRSb,chras,chram,chrae,chrbs,chrbm,chrbe,chra,chrb,flanka,flankb = item if Chr_A > Chr_B: colorIndex = int(LRSFull *250 /LRSFullThresh) else: colorIndex = int(LRSInteract *250 /LRSInteractThresh) if colorIndex >= 250: colorIndex = 249 elif colorIndex < 0: colorIndex = 0 dcolor = finecolors[colorIndex] if chra != chrb or (abs(chrbe - chrae) > 10 and abs(chrbs - chras) > 10): canvas.drawRect(xLeftOffset+chras*plotScale,yTopOffset+plotHeight- \ chrbs*plotScale,xLeftOffset+chrae*plotScale,yTopOffset+plotHeight- \ chrbe*plotScale,edgeColor=dcolor,fillColor=dcolor,edgeWidth = 0) elif chrbs >= chras: canvas.drawPolygon([(xLeftOffset+chras*plotScale,yTopOffset+plotHeight-chrbs*plotScale),\ (xLeftOffset+chras*plotScale,yTopOffset+plotHeight-chrbe*plotScale),\ (xLeftOffset+chrae*plotScale,yTopOffset+plotHeight-chrbe*plotScale)],\ edgeColor=dcolor,fillColor=dcolor,edgeWidth = 0,closed =1) else: canvas.drawPolygon([(xLeftOffset+chras*plotScale,yTopOffset+plotHeight-chrbs*plotScale),\ (xLeftOffset+chrae*plotScale,yTopOffset+plotHeight-chrbs*plotScale), \ (xLeftOffset+chrae*plotScale,yTopOffset+plotHeight-chrbe*plotScale)], \ edgeColor=dcolor,fillColor=dcolor,edgeWidth = 0,closed =1) labelFont=pid.Font(ttf="verdana",size=24,bold=0) chrName = "chromosome %s" % chrsInfo[Chr_A][1] canvas.drawString(chrName,xLeftOffset + (plotWidth - canvas.stringWidth(chrName,font=labelFont))/2,\ yTopOffset+plotHeight+ 170,font=labelFont) chrName = "chromosome %s" % chrsInfo[Chr_B][1] canvas.drawString(chrName, 30, yTopOffset +(canvas.stringWidth(chrName,font=labelFont) + plotHeight)/2,\ font=labelFont, angle = 90) if Chr_A == Chr_B: infoStr = "minimum distance = 10 cM" infoStrWidth = canvas.stringWidth(infoStr,font=labelFont) canvas.drawString(infoStr, xLeftOffset + (plotWidth-infoStrWidth*0.707)/2, yTopOffset + \ (plotHeight+infoStrWidth*0.707)/2,font=labelFont, angle = 45, color=pid.red) labelFont=pid.Font(ttf="verdana",size=12,bold=0) gifmap = HT.Map(name='markerMap') lineColor = pid.lightblue #draw ChrA Loci ChrAInfo = d[3] preLpos = -1 i = 0 for item in ChrAInfo: Lname,Lpos = item if Lpos != preLpos: i += 1 preLpos = Lpos stepA = float(plotWidth)/i offsetA = -stepA LRectWidth = 10 LRectHeight = 3 i = 0 preLpos = -1 for item in ChrAInfo: Lname,Lpos = item if Lpos != preLpos: offsetA += stepA differ = 1 else: differ = 0 preLpos = Lpos Lpos *= plotScale Zorder = i % 5 """ LStrWidth = canvas.stringWidth(Lname,font=labelFont) canvas.drawString(Lname,xLeftOffset+offsetA+4,yTopOffset+plotHeight+140,\ font=labelFont,color=pid.blue,angle=90) canvas.drawLine(xLeftOffset+Lpos,yTopOffset+plotHeight,xLeftOffset+offsetA,\ yTopOffset+plotHeight+25,color=lineColor) canvas.drawLine(xLeftOffset+offsetA,yTopOffset+plotHeight+25,xLeftOffset+offsetA,\ yTopOffset+plotHeight+140-LStrWidth,color=lineColor) COORDS="%d,%d,%d,%d"%(xLeftOffset+offsetA+4,yTopOffset+plotHeight+140,\ xLeftOffset+offsetA-6,yTopOffset+plotHeight+140-LStrWidth) """ if differ: canvas.drawLine(xLeftOffset+Lpos,yTopOffset+plotHeight,xLeftOffset+offsetA,\ yTopOffset+plotHeight+25,color=lineColor) canvas.drawLine(xLeftOffset+offsetA,yTopOffset+plotHeight+25,xLeftOffset+offsetA,\ yTopOffset+plotHeight+80+Zorder*(LRectWidth+3),color=lineColor) rectColor = pid.orange else: canvas.drawLine(xLeftOffset+offsetA, yTopOffset+plotHeight+80+Zorder*(LRectWidth+3)-3,\ xLeftOffset+offsetA, yTopOffset+plotHeight+80+Zorder*(LRectWidth+3),color=lineColor) rectColor = pid.deeppink canvas.drawRect(xLeftOffset+offsetA, yTopOffset+plotHeight+80+Zorder*(LRectWidth+3),\ xLeftOffset+offsetA-LRectHeight,yTopOffset+plotHeight+80+Zorder*(LRectWidth+3)+LRectWidth,\ edgeColor=rectColor,fillColor=rectColor,edgeWidth = 0) COORDS="%d,%d,%d,%d"%(xLeftOffset+offsetA, yTopOffset+plotHeight+80+Zorder*(LRectWidth+3),\ xLeftOffset+offsetA-LRectHeight,yTopOffset+plotHeight+80+Zorder*(LRectWidth+3)+LRectWidth) HREF="javascript:showTrait('%s','%s');" % (mainfmName, Lname) Areas=HT.Area(shape='rect',coords=COORDS,href=HREF, title="Locus : " + Lname) gifmap.areas.append(Areas) i += 1 #print (i , offsetA, Lname, Lpos, preLpos) #print "<BR>" #draw ChrB Loci ChrBInfo = d[4] preLpos = -1 i = 0 for item in ChrBInfo: Lname,Lpos = item if Lpos != preLpos: i += 1 preLpos = Lpos stepB = float(plotHeight)/i offsetB = -stepB LRectWidth = 10 LRectHeight = 3 i = 0 preLpos = -1 for item in ChrBInfo: Lname,Lpos = item if Lpos != preLpos: offsetB += stepB differ = 1 else: differ = 0 preLpos = Lpos Lpos *= plotScale Zorder = i % 5 Lname,Lpos = item Lpos *= plotScale """ LStrWidth = canvas.stringWidth(Lname,font=labelFont) canvas.drawString(Lname, 45,yTopOffset+plotHeight-offsetB+4,font=labelFont,color=pid.blue) canvas.drawLine(45+LStrWidth,yTopOffset+plotHeight-offsetB,xLeftOffset-25,\ yTopOffset+plotHeight-offsetB,color=lineColor) canvas.drawLine(xLeftOffset-25,yTopOffset+plotHeight-offsetB,xLeftOffset,\ yTopOffset+plotHeight-Lpos,color=lineColor) COORDS = "%d,%d,%d,%d" %(45,yTopOffset+plotHeight-offsetB+4,45+LStrWidth,\ yTopOffset+plotHeight-offsetB-6) """ if differ: canvas.drawLine(xLeftOffset,yTopOffset+plotHeight-Lpos, xLeftOffset-25,\ yTopOffset+plotHeight-offsetB,color=lineColor) canvas.drawLine(xLeftOffset -25, yTopOffset+plotHeight-offsetB, \ xLeftOffset-80 -Zorder*(LRectWidth+3),yTopOffset+plotHeight-offsetB, color=lineColor) rectColor = pid.orange else: canvas.drawLine(xLeftOffset -80 -Zorder*(LRectWidth+3)+3, yTopOffset+plotHeight-offsetB, \ xLeftOffset-80 -Zorder*(LRectWidth+3),yTopOffset+plotHeight-offsetB, color=lineColor) rectColor = pid.deeppink HREF = "javascript:showTrait('%s','%s');" % (mainfmName, Lname) canvas.drawRect(xLeftOffset-80 -Zorder*(LRectWidth+3),yTopOffset+plotHeight-offsetB,\ xLeftOffset-80 -Zorder*(LRectWidth+3)-LRectWidth,yTopOffset+plotHeight-offsetB +LRectHeight,\ edgeColor=rectColor,fillColor=rectColor,edgeWidth = 0) COORDS="%d,%d,%d,%d"%(xLeftOffset-80 -Zorder*(LRectWidth+3),yTopOffset+plotHeight-offsetB,\ xLeftOffset-80 -Zorder*(LRectWidth+3)-LRectWidth,yTopOffset+plotHeight-offsetB +LRectHeight) Areas=HT.Area(shape='rect',coords=COORDS,href=HREF, title="Locus : " + Lname) gifmap.areas.append(Areas) i += 1 canvas.drawRect(xLeftOffset, yTopOffset, xLeftOffset+plotWidth, yTopOffset+plotHeight,edgeColor=pid.black) #draw spectrum i = 0 labelFont=pid.Font(ttf="tahoma",size=14,bold=0) middleoffsetX = 80 for dcolor in finecolors: canvas.drawLine(xLeftOffset+ plotWidth +middleoffsetX-15 , plotHeight + yTopOffset - i, \ xLeftOffset+ plotWidth +middleoffsetX+15 , plotHeight + yTopOffset - i, color=dcolor) if i % 50 == 0: if Chr_A >= Chr_B: canvas.drawLine(xLeftOffset+ plotWidth +middleoffsetX+15 ,plotHeight + yTopOffset - i, \ xLeftOffset+ plotWidth +middleoffsetX+20,plotHeight + yTopOffset - i, color=pid.black) canvas.drawString('%d' % int(LRSFullThresh*i/250.0),xLeftOffset+ plotWidth +middleoffsetX+22,\ plotHeight + yTopOffset - i +5, font = labelFont,color=pid.black) if Chr_A <= Chr_B: canvas.drawLine(xLeftOffset+ plotWidth +middleoffsetX-15 ,plotHeight + yTopOffset - i, \ xLeftOffset+ plotWidth +middleoffsetX-20,plotHeight + yTopOffset - i, color=pid.black) canvas.drawString('%d' % int(LRSInteractThresh*i/250.0),xLeftOffset+plotWidth+middleoffsetX-40,\ plotHeight + yTopOffset - i +5, font = labelFont,color=pid.black) i += 1 #draw spectrum label labelFont2=pid.Font(ttf="verdana",size=20,bold=0) if i % 50 == 0: i -= 1 if Chr_A >= Chr_B: canvas.drawLine(xLeftOffset+ plotWidth +middleoffsetX+15 ,plotHeight + yTopOffset - i, \ xLeftOffset+ plotWidth +middleoffsetX+20,plotHeight + yTopOffset - i, color=pid.black) canvas.drawString('%d' % int(LRSFullThresh*(i+1)/250.0),xLeftOffset+ plotWidth +middleoffsetX+22,\ plotHeight + yTopOffset - i +5, font = labelFont,color=pid.black) canvas.drawString('LRS Full',xLeftOffset+ plotWidth +middleoffsetX+50,plotHeight + yTopOffset, \ font = labelFont2,color=pid.dimgray,angle=90) if Chr_A <= Chr_B: canvas.drawLine(xLeftOffset+ plotWidth +middleoffsetX-15 ,plotHeight + yTopOffset - i, \ xLeftOffset+ plotWidth +middleoffsetX-20,plotHeight + yTopOffset - i, color=pid.black) canvas.drawString('%d' % int(LRSInteractThresh*(i+1)/250.0),xLeftOffset+ plotWidth+middleoffsetX-40,\ plotHeight + yTopOffset - i +5, font = labelFont,color=pid.black) canvas.drawString('LRS Interaction',xLeftOffset+ plotWidth +middleoffsetX-50,\ plotHeight + yTopOffset, font = labelFont2,color=pid.dimgray,angle=90) filename= webqtlUtil.genRandStr("Pair_") canvas.save(webqtlConfig.IMGDIR+filename, format='png') img2=HT.Image('/image/'+filename+'.png',border=0,usemap='#markerMap') main_title = HT.Paragraph("Pair-Scan Results: Chromosome Pair") main_title.__setattr__("class","title") form = HT.Form(cgi = os.path.join(webqtlConfig.CGIDIR, webqtlConfig.SCRIPTFILE), enctype='multipart/form-data', \ name=mainfmName, submit=HT.Input(type='hidden')) hddn = {'FormID':'showDatabase','ProbeSetID':'_','database':fd.RISet+"Geno",'CellID':'_','RISet':fd.RISet, 'incparentsf1':'on'} if fd.incparentsf1: hddn['incparentsf1']='ON' for key in hddn.keys(): form.append(HT.Input(name=key, value=hddn[key], type='hidden')) form.append(img2,gifmap) TD_LR.append(main_title, HT.Center(form), HT.P()) else: heading = "Direct Plot" detail = ['Fewer than %d strain data were entered for %s data set. No statitical analysis has been attempted.'\ % (webqtlConfig.KMININFORMATIVE, fd.RISet)] self.error(heading=heading,detail=detail) return self.dict['body'] = str(TD_LR)