示例#1
0
 def run_algorithm(self):
     try:
         max_gen = int(self.max_gen.text())
         algorithm = HillClimbing(max_gen)
         val, t_time = Runner.run_algorithm(algorithm, self.title)
         self.print_results(val, t_time)
     except ValueError as error:
         QMessageBox.warning(self, 'Value error',
                             'Invalid input:' + str(error))
示例#2
0
 def run_algorithm(self):
     try:
         max_gen = int(self.max_gen.text())
         pop_size = int(self.pop_size.text())
         num_children = int(self.num_children.text())
         algorithm = EvolutionStrat(max_gen, pop_size, num_children)
         val, t_time = Runner.run_algorithm(algorithm, self.title)
         self.print_results(val, t_time)
     except ValueError as error:
         QMessageBox.warning(self, 'Value error',
                             'Invalid input:' + str(error))
示例#3
0
 def run_algorithm(self):
     try:
         max_gen = int(self.max_gen.text())
         pop_size = int(self.pop_size.text())
         clone_f = float(self.clone_f.text())
         num_rand = int(self.num_rand.text())
         algorithm = ClonalSelection(max_gen, pop_size, clone_f, num_rand)
         val, t_time = Runner.run_algorithm(algorithm, self.title)
         self.print_results(val, t_time)
     except ValueError as error:
         QMessageBox.warning(self, 'Value error',
                             'Invalid input:' + str(error))
示例#4
0
 def run_algorithm(self):
     try:
         max_gen = int(self.max_gen.text())
         pop_size = int(self.pop_size.text())
         weight_f = float(self.weight_f.text())
         cross_r = float(self.cross_r.text())
         algorithm = DiffEvolution(max_gen, pop_size, weight_f, cross_r)
         val, t_time = Runner.run_algorithm(algorithm, self.title)
         self.print_results(val, t_time)
     except ValueError as error:
         QMessageBox.warning(self, 'Value error',
                             'Invalid input:'+str(error))
示例#5
0
 def run_algorithm(self):
     try:
         pop_size = int(self.pop_size.text())
         best_p = int(self.best_pop.text())
         max_gen = int(self.max_gen.text())
         p_m = float(self.p_m.text())
         algorithm = Genetic(pop_size, best_p, max_gen, p_m)
         val, t_time = Runner.run_algorithm(algorithm, self.title)
         self.print_results(val, t_time)
     except ValueError as error:
         QMessageBox.warning(self, 'Value error',
                             'Invalid input:'+str(error))
示例#6
0
 def run_algorithm(self):
     try:
         max_gen = int(self.max_gen.text())
         mem_size = int(self.mem_size.text())
         consid_r = float(self.consid_r.text())
         adjust_r = float(self.adjust_r.text())
         rang = float(self.rang.text())
         algorithm = Harmony(max_gen, mem_size, consid_r, adjust_r, rang)
         val, t_time = Runner.run_algorithm(algorithm, self.title)
         self.print_results(val, t_time)
     except ValueError as error:
         QMessageBox.warning(self, 'Value error',
                             'Invalid input:' + str(error))
示例#7
0
 def run_algorithm(self):
     try:
         max_gen = int(self.max_gen.text())
         num_samples = int(self.num_samples.text())
         num_update = int(self.num_update.text())
         learning_r = float(self.learning_r.text())
         algorithm = CrossEntropy(max_gen, num_samples, num_update,
                                  learning_r)
         val, t_time = Runner.run_algorithm(algorithm, self.title)
         self.print_results(val, t_time)
     except ValueError as error:
         QMessageBox.warning(self, 'Value error',
                             'Invalid input:' + str(error))
示例#8
0
 def run_algorithm(self):
     try:
         max_gen = int(self.max_gen.text())
         pop_size = int(self.pop_size.text())
         num_clones = int(self.num_clones.text())
         beta = int(self.beta.text())
         num_rand = int(self.num_rand.text())
         algorithm = ImmuneNetwork(max_gen, pop_size, num_clones, beta,
                                   num_rand)
         val, t_time = Runner.run_algorithm(algorithm, self.title)
         self.print_results(val, t_time)
     except ValueError as error:
         QMessageBox.warning(self, 'Value error',
                             'Invalid input:' + str(error))
示例#9
0
 def run_algorithm(self):
     try:
         max_gen = int(self.max_gen.text())
         pop_size = int(self.pop_size.text())
         p_cross = float(self.p_cross.text())
         max_local_gens = int(self.max_local_gens.text())
         p_mut = float(self.p_mut.text())
         p_local = float(self.p_local.text())
         algorithm = Memetic(max_gen, pop_size, p_cross, p_mut,
                             max_local_gens, p_local)
         val, t_time = Runner.run_algorithm(algorithm, self.title)
         self.print_results(val, t_time)
     except ValueError as error:
         QMessageBox.warning(self, 'Value error',
                             'Invalid input:' + str(error))
示例#10
0
 def run_algorithm(self):
     try:
         max_gen = int(self.max_gen.text())
         init_f = float(self.init_f.text())
         s_factor = float(self.s_factor.text())
         l_factor = float(self.l_factor.text())
         iter_mult = int(self.iter_mult.text())
         max_no_impr = int(self.max_no_impr.text())
         algorithm = AdaptativeRandomS(max_gen, init_f, s_factor, l_factor,
                                       iter_mult, max_no_impr)
         val, t_time = Runner.run_algorithm(algorithm, self.title)
         self.print_results(val, t_time)
     except ValueError as error:
         QMessageBox.warning(self, 'Value error',
                             'Invalid input:' + str(error))