示例#1
0
 def fevaluate_qcdewk_weight(ev, evidx, nsig, source):
     central = ev.WeightQcdEwkNominal
     try:
         up = getattr(ev, 'WeightQcdEwk_{}Up'.format(source))
         down = getattr(ev, 'WeightQcdEwk_{}Down'.format(source))
     except AttributeError:
         up = 0.
         down = 0.
     return weight_numba(central, nsig, up, down)
示例#2
0
 def fevaluate_scale_variations(ev, evidx, nsig, source, name_):
     if source == name_:
         up = ev.LHEScaleWeight[:, positions[0]]
         down = ev.LHEScaleWeight[:, positions[1]]
         weight = weight_numba(1., nsig, up, down)
     else:
         weight = np.ones(ev.size, dtype=np.float32)
     ev.delete_branches(["LHEScaleWeight"])
     return weight
示例#3
0
    def fevaluate_pu(ev, evidx, nsig, source, var_):
        mins = corrs["nTrueInt"].values.astype(np.float32)
        maxs = mins[:] + 1
        maxs[-1] = np.inf
        indices = get_bin_indices([getattr(ev, var_)], [mins], [maxs], 1)[:, 0]
        ev_corrs = corrs.iloc[indices]

        nominal = ev_corrs["corr"].values
        up = (ev_corrs["corr_up"].values / nominal - 1.) * (source == "pileup")
        down = (ev_corrs["corr_down"].values / nominal - 1.) * (source
                                                                == "pileup")
        return weight_numba(nominal, nsig, up, down)
示例#4
0
 def fevaluate_pdf_variations(ev, evidx, nsig, source):
     if source == "pdf":
         pdf_relstddev = rel_stddev(
             ev.LHEWeight_originalXWGTUP,
             ev.LHEPdfWeight.content,
             ev.LHEPdfWeight.starts,
             ev.LHEPdfWeight.stops,
         )
         weight = weight_numba(1., nsig, pdf_relstddev, -pdf_relstddev)
     else:
         weight = np.ones(ev.size, dtype=np.float32)
     ev.delete_branches(["LHEWeight_originalXWGTUP", "LHEPdfWeight"])
     return weight
    def fevaluate_met_trigger(ev, evidx, nsig, source):
        nmuons = ev.MuonSelection(ev, 'pt').counts
        metnox = ev.METnoX_pt(ev)
        wmet = met_trigger_numba(cats, xcents, params[0], nmuons, metnox)

        if source == "metTrigStat":
            up = met_trigger_numba(cats, xcents, params[1], nmuons, metnox) / wmet - 1.
            down = met_trigger_numba(cats, xcents, params[2], nmuons, metnox) / wmet - 1.
        elif source == "metTrigSyst":
            up = met_trigger_numba(cats, xcents, params[3], nmuons, metnox) / wmet - 1.
            down = met_trigger_numba(cats, xcents, params[4], nmuons, metnox) / wmet - 1.
        else:
            up = np.zeros_like(wmet)
            down = np.zeros_like(wmet)

        return weight_numba(wmet, nsig, up, down)
示例#6
0
    def fevaluate_prefiring_weight(ev, evidx, nsig, source):
        jet_mask = funcs["Jet"](ev)
        jet_eta = ev.Jet_eta[jet_mask]
        jet_effs, jet_effs_stat = get_efficiencies(
            ev,
            "Jet",
            jet_mask,
            jetmap,
        )
        jet_effs_err = np.sqrt(jet_effs_stat**2 + (syst * jet_effs)**2)

        photon_mask = funcs["Photon"](ev)
        photon_eta = ev.Photon_eta[photon_mask]
        photon_effs, photon_effs_stat = get_efficiencies(
            ev,
            "Photon",
            photon_mask,
            photmap,
        )
        photon_effs_err = np.sqrt(photon_effs_stat**2 +
                                  (syst * photon_effs)**2)

        prob, probup, probdown = prob_nonprefiring_numba(
            photon_eta.content,
            ev.Photon_phi[photon_mask].content,
            photon_effs,
            photon_effs_err,
            photon_eta.starts,
            photon_eta.stops,
            jet_eta.content,
            ev.Jet_phi[jet_mask].content,
            jet_effs,
            jet_effs_err,
            jet_eta.starts,
            jet_eta.stops,
        )
        return weight_numba(
            prob,
            nsig,
            (source == "prefiring") * probup / prob,
            (source == "prefiring") * probdown / prob,
        )
示例#7
0
    def fevaluate_object_weights(ev, evidx, nsig, source, name_):
        event_vars = [v(ev) for v in bins_vars]
        for v in event_vars:
            v.content[np.isnan(v.content)] = 0.

        indices = get_bin_indices(
            [event_vars[idx].content.astype(np.float32) for idx in range(len(event_vars))],
            [df["bin{}_low".format(idx)].values.astype(np.float32) for idx in range(len(event_vars))],
            [df["bin{}_upp".format(idx)].values.astype(np.float32) for idx in range(len(event_vars))],
            df["weight"].unique().shape[0],
        ).ravel()
        dfw = df.iloc[indices]

        sf, sfup, sfdown = weighted_mean_numba(
            event_vars[0].content, dfw["weight"].values, dfw["corr"].values,
            dfw["unc_up"].values, dfw["unc_down"].values,
            add_syst(ev).content, df["weight"].unique().shape[0],
        )

        return awk.JaggedArray(
            event_vars[0].starts, event_vars[0].stops,
            weight_numba(sf, nsig, sfup, sfdown),
        )
示例#8
0
    def fevaluate_btagsf(ev, evidx, nsig, source, attrs_):
        jet_flavour = dict_apply(h2f, ev.Jet.hadronFlavour.content)

        # Create mask
        mask = np.ones((jet_flavour.shape[0], df.shape[0]), dtype=np.bool8)

        # Flavour mask
        event_attrs = [jet_flavour.astype(np.float32)]
        mins = [df["jetFlavor"].values.astype(np.float32)]
        maxs = [(df["jetFlavor"].values + 1).astype(np.float32)]

        for jet_attr, df_attr in attrs_:
            obj_attr = getattr(ev.Jet, jet_attr)
            if callable(obj_attr):
                obj_attr = obj_attr(ev)
            event_attrs.append(obj_attr.content.astype(np.float32))
            mins.append(df[df_attr + "Min"].values.astype(np.float32))
            maxs.append(df[df_attr + "Max"].values.astype(np.float32))

        # Create indices from mask
        indices = get_bin_indices(event_attrs, mins, maxs, 3)
        idx_central = indices[:, 0]
        idx_down = indices[:, 1]
        idx_up = indices[:, 2]

        jpt = ev.Jet.ptShift(ev)
        sf = btag_formula(jpt.content, df.iloc[idx_central])
        sf_up = btag_formula(jpt.content, df.iloc[idx_up])
        sf_down = btag_formula(jpt.content, df.iloc[idx_down])

        sf_up = (source == "btagSF") * (sf_up / sf - 1.)
        sf_down = (source == "btagSF") * (sf_down / sf - 1.)
        return awk.JaggedArray(
            jpt.starts,
            jpt.stops,
            weight_numba(sf, nsig, sf_up, sf_down),
        )