示例#1
0
    def evaluate(self, x, y_true, verbose=1, return_full=False):

        y_pred = self.model.predict(np.asarray(x))

        az_preds_bit, az_preds_kappa, el_preds_bit, el_preds_kappa, ti_preds_bit, ti_preds_kappa = \
            self.unpack_all_preds(y_pred)
        az_preds_deg, el_preds_deg, ti_preds_deg = self.convert_to_deg_preds(
            y_pred)

        az_true_bit, el_true_bit, ti_true_bit = self.unpack_target(y_true)
        az_true_deg = bit2deg(az_true_bit)
        el_true_deg = bit2deg(el_true_bit)
        ti_true_deg = bit2deg(ti_true_bit)

        az_aads, az_maad, az_sem = self.maad(az_true_deg,
                                             az_preds_deg,
                                             'azimuth',
                                             verbose=verbose)
        el_aads, el_maad, el_sem = self.maad(el_true_deg,
                                             el_preds_deg,
                                             'elevation',
                                             verbose=verbose)
        ti_aads, ti_maad, ti_sem = self.maad(ti_true_deg,
                                             ti_preds_deg,
                                             'tilt',
                                             verbose=verbose)

        az_lls, az_ll_mean, az_ll_sem = self.log_likelihood(az_true_bit,
                                                            az_preds_bit,
                                                            az_preds_kappa,
                                                            self.az_gamma,
                                                            'azimuth',
                                                            verbose=verbose)
        el_lls, el_ll_mean, el_ll_sem = self.log_likelihood(el_true_bit,
                                                            el_preds_bit,
                                                            el_preds_kappa,
                                                            self.el_gamma,
                                                            'elevation',
                                                            verbose=verbose)
        ti_lls, el_ll_mean, ti_ll_sem = self.log_likelihood(ti_true_bit,
                                                            ti_preds_bit,
                                                            ti_preds_kappa,
                                                            self.ti_gamma,
                                                            'tilt',
                                                            verbose=verbose)

        lls = az_lls + el_lls + ti_lls
        ll_mean = np.mean(lls)
        ll_sem = stats.sem(lls)

        maad_mean = np.mean([az_maad, el_maad, ti_maad])
        print("MAAD TOTAL: %2.2f+-%2.2fSE" % (maad_mean, az_sem))
        print("Log-likelihood TOTAL: %2.2f+-%2.2fSE" % (ll_mean, ll_sem))

        if return_full:
            return maad_mean, ll_mean, ll_sem, lls
        else:
            return maad_mean, ll_mean, ll_sem
    def convert_to_deg_preds(self, y_pred):

        az_preds_bit, az_preds_kappa, el_preds_bit, el_preds_kappa, ti_preds_bit, ti_preds_kappa = self.unpack_all_preds(y_pred)

        az_preds_deg_lst = np.vstack([bit2deg(az_preds_bit[sid]) for sid in range(0, self.n_samples)]).T
        az_preds_deg = maximum_expected_utility(az_preds_deg_lst)
        el_preds_deg_lst = np.vstack([bit2deg(el_preds_bit[sid]) for sid in range(0, self.n_samples)]).T
        el_preds_deg = maximum_expected_utility(el_preds_deg_lst)
        ti_preds_deg_lst = np.vstack([bit2deg(ti_preds_bit[sid]) for sid in range(0, self.n_samples)]).T
        ti_preds_deg = maximum_expected_utility(ti_preds_deg_lst)

        return az_preds_deg, el_preds_deg, ti_preds_deg
示例#3
0
    def evaluate(self, x, ytrue_deg, data_part, return_per_image=False):

        ytrue_bit = deg2bit(ytrue_deg)
        ypreds = self.model.predict(x)

        results = dict()

        vmmix_mu, vmmix_kappas, vmmix_probs = self.parse_output_np(ypreds)
        vmmix_mu_rad = np.deg2rad(bit2deg_multi(vmmix_mu))
        samples = sample_von_mises_mixture_multi(vmmix_mu_rad, vmmix_kappas, vmmix_probs, n_samples=100)
        point_preds = maximum_expected_utility(np.rad2deg(samples))
        maad_errs = maad_from_deg(point_preds, ytrue_deg)
        results['maad_loss'] = float(np.mean(maad_errs))
        results['maad_sem'] = float(sem(maad_errs))

        log_likelihoods = self._von_mises_mixture_log_likelihood_np(ytrue_bit, ypreds)
        results['log_likelihood_mean'] = float(np.mean(log_likelihoods))
        results['log_likelihood_sem'] = float(sem(log_likelihoods, axis=None))

        print("MAAD error (%s) : %f pm %fSEM" % (data_part,
                                                results['maad_loss'],
                                                results['maad_sem']))
        print("log-likelihood (%s) : %f pm %fSEM" % (data_part,
                                                    results['log_likelihood_mean'],
                                                    results['log_likelihood_sem']))

        if return_per_image:
            results['point_preds'] = bit2deg(deg2bit(point_preds))
            results['maad'] = maad_errs
            results['log_likelihood'] = log_likelihoods

        return results
    def save_detections_for_official_eval(self, x, save_path):

        # det path example: '/home/sprokudin/RenderForCNN/view_estimation/vp_test_results/aeroplane_pred_view.txt'

        y_pred = self.model.predict(np.asarray(x))
        az_preds_bit, az_preds_kappa, el_preds_bit, el_preds_kappa, ti_preds_bit, ti_preds_kappa = self.unpack_preds(
            y_pred)
        az_preds_deg = bit2deg(az_preds_bit)
        el_preds_deg = bit2deg(el_preds_bit)
        ti_preds_deg = bit2deg(ti_preds_bit)

        y_pred = np.vstack([az_preds_deg, el_preds_deg, ti_preds_deg]).T

        np.savetxt(save_path, y_pred, delimiter=' ', fmt='%i')
        print("evaluation data saved to %s" % save_path)

        return
    def evaluate_multi(self, x, ytrue_deg, data_part, n_samples=50, verbose=1):

        ytrue_bit = deg2bit(ytrue_deg)

        results = dict()

        preds = self.get_multiple_predictions(x,
                                              ytrue_bit,
                                              n_samples=n_samples)

        results['elbo'] = np.mean(preds['elbo'])
        results['elbo_sem'] = sem(np.mean(preds['elbo'], axis=1))

        results['kl_div'] = np.mean(preds['kl_div'])
        results['kl_div_sem'] = sem(np.mean(preds['kl_div'], axis=1))

        ypreds = self.decoder_model.predict(x)
        ypreds_bit = ypreds[:, 0:2]
        kappa_preds = ypreds[:, 2:]

        ypreds_deg = bit2deg(ypreds_bit)

        loss = maad_from_deg(ytrue_deg, preds['maxutil_deg_dec'])
        results['maad_loss'] = np.mean(loss)
        results['maad_loss_sem'] = sem(loss, axis=None)

        importance_loglikelihoods = importance_loglikelihood(
            preds['mu_encoder'], preds['log_sigma_encoder'], preds['mu_prior'],
            preds['log_sigma_prior'], preds['u_encoder'], preds['mu_bit'],
            preds['kappa'], ytrue_bit)

        results['importance_log_likelihood'] = np.mean(
            importance_loglikelihoods)
        results['importance_log_likelihood_sem'] = sem(
            importance_loglikelihoods, axis=None)

        if verbose:

            print("MAAD error (%s) : %f ± %fSEM" %
                  (data_part, results['maad_loss'], results['maad_loss_sem']))

            print("ELBO (%s) : %f ± %fSEM" %
                  (data_part, results['elbo'], results['elbo_sem']))

            print(
                "Approx Log-Likelihood, importance sampling (%s) : %f ± %fSEM"
                % (data_part, results['importance_log_likelihood'],
                   results['importance_log_likelihood_sem']))

            print("KL-div (%s) : %f ± %fSEM" %
                  (data_part, results['kl_div'], results['kl_div_sem']))

        return results
    def evaluate(self, x, ytrue_deg, data_part, return_per_image=False):

        ytrue_bit = deg2bit(ytrue_deg)
        ypreds = self.model.predict(x)
        ypreds_bit = ypreds[:, 0:2]
        ypreds_deg = bit2deg(ypreds_bit)

        if self.predict_kappa:
            kappa_preds = ypreds[:, 2:]
        else:
            kappa_preds = np.ones([ytrue_deg.shape[0], 1
                                   ]) * self.fixed_kappa_value

        loss = maad_from_deg(ypreds_deg, ytrue_deg)

        results = dict()

        results['maad_loss'] = float(np.mean(loss))
        results['maad_loss_sem'] = float(sem(loss))
        print("MAAD error (%s) : %f pm %fSEM" %
              (data_part, results['maad_loss'], results['maad_loss_sem']))

        results['mean_kappa'] = float(np.mean(kappa_preds))
        results['std_kappa'] = float(np.std(kappa_preds))

        log_likelihoods = von_mises_log_likelihood_np(ytrue_bit, ypreds_bit,
                                                      kappa_preds)

        results['log_likelihood_mean'] = float(np.mean(log_likelihoods))
        results['log_likelihood_sem'] = float(sem(log_likelihoods, axis=None))
        print("log-likelihood (%s) : %f pm %fSEM" %
              (data_part, results['log_likelihood_mean'],
               results['log_likelihood_sem']))

        if return_per_image:
            results['point_preds'] = bit2deg(deg2bit(ypreds_deg))
            results['maad'] = loss
            results['log_likelihood'] = log_likelihoods

        return results
示例#7
0
    def evaluate(self, x, ytrue_deg, data_part, verbose=1):

        ytrue_bit = deg2bit(ytrue_deg)

        results = dict()

        cvae_preds = self.full_model.predict([x, ytrue_bit])
        elbo, ll, kl = self._cvae_elbo_loss_np(ytrue_bit, cvae_preds)

        results['elbo'] = np.mean(elbo)
        results['elbo_sem'] = sem(elbo)

        results['kl'] = np.mean(kl)
        results['kl_sem'] = sem(kl)

        results['log_likelihood'] = np.mean(ll)
        results['log_likelihood_loss_sem'] = sem(ll)

        ypreds = self.decoder_model.predict(x)
        ypreds_bit = ypreds[:, 0:2]
        kappa_preds = ypreds[:, 2:]

        ypreds_deg = bit2deg(ypreds_bit)

        loss = maad_from_deg(ytrue_deg, ypreds_deg)
        results['maad_loss'] = np.mean(loss)
        results['maad_loss_sem'] = sem(loss)

        # log_likelihood_loss = von_mises_log_likelihood_np(ytrue_bit, ypreds_bit, kappa_preds,
        #                                                   input_type='biternion')

        # results['log_likelihood'] = np.mean(log_likelihood_loss)
        # results['log_likelihood_loss_sem'] = sem(log_likelihood_loss)

        if verbose:

            print("MAAD error (%s) : %f ± %fSEM" %
                  (data_part, results['maad_loss'], results['maad_loss_sem']))

            print("ELBO (%s) : %f ± %fSEM" %
                  (data_part, results['elbo'], results['elbo_sem']))

            print("KL-div (%s) : %f ± %fSEM" %
                  (data_part, results['kl'], results['kl_sem']))

            # print("log-likelihood (%s) : %f±%fSEM" % (data_part,
            #                                           results['log_likelihood'],
            #                                           results['log_likelihood_loss_sem']))
        return results
    def evaluate(self, x, y_true, kappas=None, verbose=1, return_full=False):

        y_pred = self.model.predict(np.asarray(x))

        az_preds_bit, az_preds_kappa, el_preds_bit, el_preds_kappa, ti_preds_bit, ti_preds_kappa = self.unpack_preds(
            y_pred)
        az_preds_deg = bit2deg(az_preds_bit)
        el_preds_deg = bit2deg(el_preds_bit)
        ti_preds_deg = bit2deg(ti_preds_bit)

        az_true_bit, el_true_bit, ti_true_bit = self.unpack_target(y_true)
        az_true_deg = bit2deg(az_true_bit)
        el_true_deg = bit2deg(el_true_bit)
        ti_true_deg = bit2deg(ti_true_bit)

        az_aads, az_maad, az_sem = self.maad(az_true_deg,
                                             az_preds_deg,
                                             'azimuth',
                                             verbose=verbose)
        el_aads, el_maad, el_sem = self.maad(el_true_deg,
                                             el_preds_deg,
                                             'elevation',
                                             verbose=verbose)
        ti_aads, ti_maad, ti_sem = self.maad(ti_true_deg,
                                             ti_preds_deg,
                                             'tilt',
                                             verbose=verbose)

        if self.loss_type == 'cosine':
            print("cosine loss, using fixed kappas : %s" % str(kappas))
            az_kappa, el_kappa, ti_kappa = kappas
            az_preds_kappa = np.ones([y_true.shape[0], 1]) * az_kappa
            el_preds_kappa = np.ones([y_true.shape[0], 1]) * el_kappa
            ti_preds_kappa = np.ones([y_true.shape[0], 1]) * ti_kappa

        az_lls, az_ll_mean, az_ll_sem = self.log_likelihood(az_true_bit,
                                                            az_preds_bit,
                                                            az_preds_kappa,
                                                            self.az_gamma,
                                                            'azimuth',
                                                            verbose=verbose)
        el_lls, el_ll_mean, el_ll_sem = self.log_likelihood(el_true_bit,
                                                            el_preds_bit,
                                                            el_preds_kappa,
                                                            self.el_gamma,
                                                            'elevation',
                                                            verbose=verbose)
        ti_lls, el_ll_mean, ti_ll_sem = self.log_likelihood(ti_true_bit,
                                                            ti_preds_bit,
                                                            ti_preds_kappa,
                                                            self.ti_gamma,
                                                            'tilt',
                                                            verbose=verbose)

        lls = az_lls + el_lls + ti_lls
        ll_mean = np.mean(lls)
        ll_sem = stats.sem(lls)

        maad_mean = np.mean([az_maad, el_maad, ti_maad])
        print("MAAD TOTAL: %2.2f+-%2.2fSE" % (maad_mean, az_sem))
        print("Log-likelihood TOTAL: %2.2f+-%2.2fSE" % (ll_mean, ll_sem))

        if return_full:
            return maad_mean, ll_mean, ll_sem, lls
        else:
            return maad_mean, ll_mean, ll_sem