def __init__(self, resnet_size_choices=None): super(ResnetArgParser, self).__init__(parents=[ parsers.BaseParser(), parsers.PerformanceParser(), parsers.ImageModelParser(), parsers.ExportParser(), parsers.BenchmarkParser(), ]) self.add_argument( '--version', '-v', type=int, choices=[1, 2], default=resnet_model.DEFAULT_VERSION, help='Version of ResNet. (1 or 2) See README.md for details.') self.add_argument( '--resnet_size', '-rs', type=int, default=50, choices=resnet_size_choices, help='[default: %(default)s] The size of the ResNet model to use.', metavar='<RS>' if resnet_size_choices is None else None)
def __init__(self): super(TestParser, self).__init__(parents=[ parsers.BaseParser(multi_gpu=True, num_gpu=False), parsers.PerformanceParser(num_parallel_calls=True, inter_op=True, intra_op=True, use_synthetic_data=True), parsers.ImageModelParser(data_format=True), parsers.BenchmarkParser(benchmark_log_dir=True, bigquery_uploader=True) ])
def __init__(self): super(MNISTArgParser, self).__init__(parents=[ parsers.BaseParser(multi_gpu=True, num_gpu=False), parsers.ImageModelParser(), parsers.ExportParser(), ]) self.set_defaults(data_dir=DATA_DIR, model_dir=MODEL_DIR, export_dir=EXPORT_DIR, batch_size=100, train_epochs=1)
def __init__(self): super(ArgParser, self).__init__( parents=[parsers.BaseParser(), parsers.ImageModelParser()]) # self.add_argument( # '--export_dir', # type=str) self.add_argument('--data_root', type=str) self.add_argument('--image_size', type=int) self.set_defaults( # data_dir='./data', model_dir=os.path.join(sys.path[0], 'fire', 'model'), export_dir=os.path.join(sys.path[0], 'fire', 'export'), data_root=os.path.join(sys.path[0], 'fire', 'data', 'tfrecords'), image_size=28, batch_size=5, train_epochs=1, data_format='channels_first')
def __init__(self, resnet_size_choices=None): super(ResnetArgParser, self).__init__(parents=[ parsers.BaseParser(multi_gpu=False), parsers.PerformanceParser(num_parallel_calls=False), parsers.ImageModelParser(), parsers.ExportParser(), parsers.BenchmarkParser(), ]) self.add_argument( '--version', '-v', type=int, choices=[1, 2, 14, 24, 34], default=resnet_model.DEFAULT_VERSION, help= 'Version of ResNet. (1, 2, 14 or 24, 34) See README.md for details.' ) self.add_argument( '--version_t', '-vt', type=int, choices=[1, 2, 14], default=resnet_model.DEFAULT_VERSION, help= 'Version of ResNet Teacher. (1, 2 or 14) See README.md for details.' ) self.add_argument( '--resnet_size', '-rs', type=int, default=50, choices=resnet_size_choices, help='[default: %(default)s] The size of the ResNet model to use.', metavar='<RS>' if resnet_size_choices is None else None) self.add_argument( '--final_size', '-fs', type=int, default=2048, help='[default: %(default)s] The final size for dense layer.', metavar='<FS>') self.add_argument( "--pickle_model", "-pm", default="./gap_save/gap_pruned.pkl", help= "[default: %(default)s] The location of the pruned model param file " "files.", metavar="<PM>", ) self.add_argument( "--random_init", "-ri", action='store_true', help= "[default: %(default)s] random_init: If True the gap fine-tune is from scratch." ) self.add_argument( "--enable_kd", "-ek", action='store_true', help= "[default: %(default)s] enable_kd: If True knowledge distillation is enabled." ) self.add_argument( '--kd_size', '-ks', type=int, default=50, choices=resnet_size_choices, help= '[default: %(default)s] The size of the ResNet model (teach) to use.', metavar='<KS>' if resnet_size_choices is None else None) self.add_argument( "--temp_dst", "-tdst", type=float, default=2., help= '[default: %(default)s] temp_dst: temperature for knowledge distillation.', metavar="<TDST>") self.add_argument( "--w_dst", "-wdst", type=float, default=2., help= '[default: %(default)s] w_dst: balance factor for knowledge distillation.', metavar="<WDST>") self.add_argument( "--mix_up", "-mu", action='store_true', help="[default: %(default)s] mix_up: If True mix_up is enabled.") self.add_argument( '--mx_mode', '-mmd', type=int, default=0, help= '[default: %(default)s] the mode of mixup: randome or reverse.', metavar='<MMD>') self.add_argument( "--enable_quantize", "-eqz", action='store_true', help= "[default: %(default)s] enable_quantize: If True quantization-aware training is enabled." ) self.add_argument( "--online_quantize", "-oqz", action='store_true', help= "[default: %(default)s] enable_quantize: If True online quantization-aware training is enabled." ) self.add_argument('--q_bits', '-qbt', type=int, default=8, help='[default: %(default)s] quantization bits.', metavar='<QBT>') self.add_argument('--copy_num', '-cnum', type=int, default=10, help='[default: %(default)s] quantization copies.', metavar='<CNUM>') self.add_argument( '--q_mode', '-qme', type=int, default=1, help='[default: %(default)s] quantization method (KL, MAX, Perc.).', metavar='<QME>') self.add_argument( "--enable_at", "-eat", action='store_true', help= "[default: %(default)s] enable_at: If True attention transfer is enabled." ) self.add_argument( "--w_at", "-wat", type=float, default=8., help= '[default: %(default)s] w_at: balance factor for attention transfer.', metavar="<WDST>") self.add_argument( "--oss_load", "-osl", action='store_true', help= "[default: %(default)s] oss_load: If True dataset is loaded from oss." )
def __init__(self, resnet_size_choices=None): super(ResnetArgParser, self).__init__(parents=[ parsers.BaseParser(), parsers.PerformanceParser(), parsers.ImageModelParser(), ]) self.add_argument( '--version', '-v', type=int, choices=[1, 2], default=resnet_model.DEFAULT_VERSION, help="Version of ResNet. (1 or 2) See README.md for details." ) self.add_argument( '--resnet_size', '-rs', type=int, default=50, choices=resnet_size_choices, help="[default: %(default)s] The size of the ResNet model to use.", metavar='<RS>' if resnet_size_choices is None else None ) self.add_argument( '--method', '-mt', default=resnet_model.DEFAULT_METHOD, help = "[default: %(default)s] The type of tensor decomposition used to compress the reference model." ) self.add_argument( '--scope', '-sc', default=resnet_model.DEFAULT_SCOPE, help = "[default: %(default)s] The variable scope used with the tensor decomposition method." ) self.add_argument( '--reference_model_dir', '-rd', help = "[default: %(default)s] The location of the reference model.", metavar = '<RD>' ) self.add_argument( '--reference_model_checkpoint_name', '-rdcn', help = "[default: %(default)s] The name of the reference model checkpoint.", metavar = '<RDC>' ) self.add_argument( '--output_model_dir', '-omd', default = '/tmp', help = "[default: %(default)s] The location of the tensorized model.", metavar = '<MD>' ) self.add_argument( '--rate', '-cr', default = 1, type=float, help = "[default: %(default)d] The targeted compression rate of the tensorized model.", metavar = '<CR>' ) self.add_argument( '--rate_decay', '-rdy', default = 'flat', help = "[default: %(default)d] The rate decay function used for dynamic rate change.", metavar = '<RDY>' )