示例#1
0
def train_transforms(image, masks):
    seq = augmentation.get_train_augmenters_seq2()
    hooks_masks = augmentation.get_train_masks_augmenters_deactivator()

    # Convert the stochastic sequence of augmenters to a deterministic one.
    # The deterministic sequence will always apply the exactly same effects to the images.
    seq_det = seq.to_deterministic(
    )  # call this for each batch again, NOT only once at the start
    image_aug = seq_det.augment_images([image])[0]
    masks_aug = seq_det.augment_images([masks], hooks=hooks_masks)[0]

    image_aug_tensor = transforms.ToTensor()(image_aug.copy())

    masks_aug = (masks_aug >= MASK_THRESHOLD).astype(np.uint8)

    return image_aug_tensor, masks_aug
示例#2
0
def train_transforms(image, masks, labels=None):
    seq = augmentation.get_train_augmenters_seq2(mode='constant')
    hooks_masks = augmentation.get_train_masks_augmenters_deactivator()

    # Convert the stochastic sequence of augmenters to a deterministic one.
    # The deterministic sequence will always apply the exactly same effects to the images.
    seq_det = seq.to_deterministic()  # call this for each batch again, NOT only once at the start
    image = seq_det.augment_images([image])[0]
    image = transforms.ToTensor()(image.copy())
    image = transforms.Normalize(IMAGES_MEAN, IMAGES_STD)(image)

    masks = seq_det.augment_images([masks], hooks=hooks_masks)[0]
    masks = (masks >= MASK_THRESHOLD).astype(np.uint8)

    if labels is not None:
        labels = seq_det.augment_images([labels], hooks=hooks_masks)[0]
        labels = (labels > 0).astype(np.uint8)
        return image, masks, labels
    else:
        return image, masks
示例#3
0
def train_transforms(image, mask, labels):
    seq = augmentation.get_train_augmenters_seq2(mode='constant')
    hooks_masks = augmentation.get_train_masks_augmenters_deactivator()

    # Convert the stochastic sequence of augmenters to a deterministic one.
    # The deterministic sequence will always apply the exactly same effects to the images.
    seq_det = seq.to_deterministic(
    )  # call this for each batch again, NOT only once at the start
    image_aug = seq_det.augment_images([image])[0]
    image_aug_tensor = transforms.ToTensor()(image_aug.copy())
    image_aug_tensor = transforms.Normalize(IMAGES_MEAN,
                                            IMAGES_STD)(image_aug_tensor)

    mask_aug = seq_det.augment_images([mask], hooks=hooks_masks)[0]
    mask_aug = (mask_aug >= MASK_THRESHOLD).astype(np.uint8)

    labels_aug = seq_det.augment_images([labels], hooks=hooks_masks)[0]
    for index in range(labels_aug.shape[-1]):
        labels_aug[..., index] = (labels_aug[..., index] > 0).astype(np.uint8)

    return image_aug_tensor, mask_aug, labels_aug