def plot_field():
    field_list = get_field_points()
    for i in range(len(field_list)):
        if (i <= 4):
            draw_box(field_list[i])
        elif (i == 5):
            draw_line(field_list[i])
    draw_lefthalf_circle()
    draw_righthalf_circle()
    draw_middlecircle()


# get camera position
cam = cam_utils.Camera('camera0', db[0].calib['00118']['A'],
                       db[0].calib['00118']['R'], db[0].calib['00118']['T'],
                       db[0].shape[0], db[0].shape[1])

# initialize figure
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')

# camera0
x = cam.get_position().item(0, 0)
y = cam.get_position().item(1, 0)
z = cam.get_position().item(2, 0)
ax.scatter(x, y, z, label='camera0', marker='o')

# demo field for x-y plane
field = io.imread('./demo/data/demo_field.png')
示例#2
0
    def dump_video(self, vidtype, scale=1, mot_tracks=None, one_color=True):
        if vidtype not in ['calib', 'poses', 'detections', 'tracks', 'mask']:
            raise Exception('Uknown video format')

        if vidtype == 'tracks' and mot_tracks is None:
            raise Exception('No MOT tracks provided')

        glog.info('Dumping {0} video'.format(vidtype))

        fourcc = cv2.VideoWriter_fourcc(*'mp4v')  # MP4V
        out_file = join(self.path_to_dataset, '{0}.mp4'.format(vidtype))
        # 25 FPS
        out = cv2.VideoWriter(out_file, fourcc, 25.0,
                              (self.shape[1] // scale, self.shape[0] // scale))

        font = cv2.FONT_HERSHEY_SIMPLEX
        cmap = matplotlib.cm.get_cmap('hsv')
        if mot_tracks is not None:
            n_tracks = max(np.unique(mot_tracks[:, 1]))

        for i, basename in enumerate(tqdm(self.frame_basenames)):

            img = self.get_frame(i, dtype=np.uint8)

            if vidtype == 'poses':
                # Pose
                poses = self.poses[basename]
                draw_utils.draw_skeleton_on_image(img, poses, cmap, one_color=one_color)

            if vidtype == 'calib':
                # Calib
                cam = cam_utils.Camera('tmp', self.calib[basename]['A'], self.calib[basename]
                                       ['R'], self.calib[basename]['T'], self.shape[0], self.shape[1])
                canvas, mask = draw_utils.draw_field(cam)
                canvas = cv2.dilate(canvas.astype(np.uint8), np.ones(
                    (15, 15), dtype=np.uint8)).astype(float)
                img = img * (1 - canvas)[:, :, None] + np.dstack((canvas *
                                                                  255, np.zeros_like(canvas), np.zeros_like(canvas)))

            elif vidtype == 'detections':
                # Detection
                bbox = self.bbox[basename].astype(np.int32)
                if self.ball[basename] is not None:
                    ball = self.ball[basename].astype(np.int32)
                else:
                    ball = np.zeros((0, 4), dtype=np.int32)

                for j in range(bbox.shape[0]):
                    cv2.rectangle(img, (bbox[j, 0], bbox[j, 1]),
                                  (bbox[j, 2], bbox[j, 3]), (255, 0, 0), 10)
                for j in range(ball.shape[0]):
                    cv2.rectangle(img, (ball[j, 0], ball[j, 1]),
                                  (ball[j, 2], ball[j, 3]), (0, 255, 0), 10)

            elif vidtype == 'tracks':
                # Tracks
                cur_id = mot_tracks[:, 0] - 1 == i
                current_boxes = mot_tracks[cur_id, :]

                for j in range(current_boxes.shape[0]):
                    track_id, x, y, w, h = current_boxes[j, 1:6]
                    clr = cmap(track_id / float(n_tracks))
                    cv2.rectangle(img, (int(x), int(y)), (int(x + w), int(y + h)),
                                  (clr[0] * 255, clr[1] * 255, clr[2] * 255), 10)
                    cv2.putText(img, str(int(track_id)), (int(x), int(y)),
                                font, 2, (255, 255, 255), 2, cv2.LINE_AA)

            elif vidtype == 'mask':
                # Mask
                mask = self.get_mask_from_detectron(i)*255
                img = np.dstack((mask, mask, mask))

            img = cv2.resize(img, (self.shape[1] // scale, self.shape[0] // scale))
            out.write(np.uint8(img[:, :, (2, 1, 0)]))

        # Release everything if job is finished
        out.release()
        cv2.destroyAllWindows()
示例#3
0
文件: core.py 项目: benwrk/SportVideo
    def preprocess_save_to_npy(self, trajectory):
        '''
    Input shape = (n_trajectory, seq_len, features) ===> e.g. (1, )
    Features cols = (x, y, z, u_c1, v_c1, u_c2, v_c2)
    '''

        print("[#] Saving 3D tracking by triangulation")
        calibs = self.load_calibs(suffix='manual')
        cam1 = calibs[self.video_name[0]]
        cam1_obj = cam_utils.Camera(name='cam1',
                                    A=np.array(cam1['A']),
                                    R=np.array(cam1['R']),
                                    T=np.array(cam1['T']),
                                    h=cam1['H'],
                                    w=cam1['W'])
        cam2 = calibs[self.video_name[1]]
        cam2_obj = cam_utils.Camera(name='cam2',
                                    A=np.array(cam2['A']),
                                    R=np.array(cam2['R']),
                                    T=np.array(cam2['T']),
                                    h=cam2['H'],
                                    w=cam2['W'])

        cam_list = [cam1_obj, cam2_obj]
        trajectory_list = [[], []]
        for i in range(trajectory.shape[0]):
            # Unity convention
            trajectory[i][:, [2]] *= -1
            x, y, z = trajectory[i][:, [0]], trajectory[i][:, [1]], trajectory[
                i][:, [2]]
            for j, cam in enumerate(cam_list):
                if not self.args.use_tracking:
                    # Do a projection if tracking is not used as an input
                    trajectory_npy = []
                    u, v, d = transf_utils.project(
                        cam=cam, pts=trajectory[i][..., [0, 1, 2]])
                else:
                    trajectory_cam = transf_utils.transform_3d(
                        m=cam.to_unity()[0],
                        pts=trajectory[i][..., [0, 1, 2]],
                        inv=False)
                    d = -trajectory_cam[:, [
                        2
                    ]]  # Depth direction should be positive for unity
                    if j == 0:
                        u, v = trajectory[i][:, [3]], trajectory[i][:, [4]]
                    if j == 1:
                        u, v = trajectory[i][:, [5]], trajectory[i][:, [6]]

                    # For raw tracking, unity coordinates start from (0, 0) at the bottom left, so I need to remove with the height
                    v = cam.height - v

                dummy_eot = np.zeros(shape=(x.shape))
                saving_trajectory = np.concatenate(
                    (x, y, z, u, v, d, dummy_eot), axis=1)
                saving_trajectory = np.vstack(
                    (saving_trajectory[0, :], np.diff(saving_trajectory,
                                                      axis=0)))
                trajectory_list[j].append(saving_trajectory)

        for i, trajectory_cam in enumerate(trajectory_list):
            trajectory_cam = np.array(trajectory_cam)
            print("Camera {} : {}".format(i + 1, trajectory_cam.shape))
            # np.save(trajectory_cam)
            # .npy format (For extracting 3d trajectory)
            self.intiailize_folder(path="{}/{}".format(
                self.path_to_calibration, 'preprocessed_npy'))
            preprocessed_npy = join(self.path_to_calibration,
                                    'preprocessed_npy',
                                    'trajectory_{}'.format(self.video_name[i]))
            preprocessed_npy = join(
                self.path_to_calibration, 'preprocessed_npy',
                'MixedTrajectory_Trial{}'.format(self.video_name[i][-1]))
            np.save(preprocessed_npy, trajectory_cam)
示例#4
0
    data = json.load(f)


db = soccer3d.YoutubeVideo(opt.path_to_data)
db.digest_metadata()

db.refine_poses(keypoint_thresh=7, score_thresh=0.4, neck_thresh=0.4)

file_utils.mkdir(join(db.path_to_dataset, 'scene3d'))

for sel_frame in tqdm(range(db.n_frames)):
    img = db.get_frame(sel_frame)
    basename = db.frame_basenames[sel_frame]

    cam_data = db.calib[basename]
    cam = cam_utils.Camera(basename, cam_data['A'], cam_data['R'], cam_data['T'], db.shape[0], db.shape[1])

    player_list = data[basename]

    frame_mesh_points = np.zeros((0, 3))
    frame_mesh_faces = np.zeros((0, 3))

    uvs_atlas = []
    textures_atlas = []

    cnt = 0
    for p in range(len(player_list)):
        mesh = om.PolyMesh()

        ply_name = join(opt.path_to_data, 'players', 'meshes', player_list[p]['mesh']+'.ply')
        vertex_data, face_data, _, _ = io.read_ply(ply_name)
示例#5
0
opt, _ = parser.parse_known_args()


with open(join(opt.path_to_data, 'players', 'metadata', 'position.json')) as f:
    data = json.load(f)


db = soccer3d.YoutubeVideo(opt.path_to_data)
db.digest_metadata()


img = db.get_frame(0)
mask = db.get_mask_from_detectron(0)
cam_npy = db.calib[db.frame_basenames[0]]

cam = cam_utils.Camera('tmp', cam_npy['A'], cam_npy['R'], cam_npy['T'], db.shape[0], db.shape[1])

mask = cv2.dilate(mask, np.ones((9, 9), np.int8), iterations=1)

img = cv2.inpaint((img[:, :, (2, 1, 0)]*255).astype(np.uint8), (mask*255).astype(np.uint8), 3, cv2.INPAINT_TELEA)[:, :, (2, 1, 0)]/255.

W, H = 104.73, 67.74

#   a X-------------------------X b
#     |                         |
#     |                         |
#   d X-------------------------X c

# Whole field
p3 = np.array([[-W/2., 0, H/2], [W/2., 0, H/2], [W/2., 0, -H/2] , [-W/2., 0, -H/2]])
p2, _ = cam.project(p3)
示例#6
0
# db_Left = soccer.SoccerVideo(os.path.join(opt.path_to_data, 'Left'))
# db_Right = soccer.SoccerVideo(os.path.join(opt.path_to_data, 'Right'))
db_K9 = soccer.SoccerVideo(os.path.join(opt.path_to_data, 'K9'))

db_K1.digest_metadata()
db_K8.digest_metadata()
# db_Left.digest_metadata()
# db_Right.digest_metadata()
db_K9.digest_metadata()

# plot the field
data = []

# K1:
cam = cam_utils.Camera("K1", db_K1.calib[db_K1.frame_basenames[0]]['A'],
                       db_K1.calib[db_K1.frame_basenames[0]]['R'],
                       db_K1.calib[db_K1.frame_basenames[0]]['T'],
                       db_K1.shape[0], db_K1.shape[1])
vec = np.array([0, 0, 1])
dir1 = cam.R.T.dot(vec.T)
dir1 *= 10  # cam.A[0][0] # 10 good value
dir1 = dir1 + [
    cam.get_position().item(0, 0),
    cam.get_position().item(1, 0),
    cam.get_position().item(2, 0)
]
cam_vec1 = np.array([
    cam.get_position().item(0, 0),
    cam.get_position().item(1, 0),
    cam.get_position().item(2, 0)
])
data.append(
示例#7
0
#!/usr/bin/env python

from utils import camera, bash, events
from itertools import cycle
import time
import os
import sys
import readline
import random

import serial

cam = camera.Camera()
shell = bash.Bash()
events = events.Events()
present = False
responded = False
found = 0
lost = 0

welcomes = cycle(['lazybones', 'alive', 'buddy'])
insults = cycle(['facebook', 'homework', 'notpopular'])
events = cycle([
    'http://portugal2013sf-es2.eventbrite.com',
    'http://gatsbypremiere-es2.eventbrite.com',
    'http://cfadrinkupsf-es2.eventbrite.com',
    'http://tchotour-es2.eventbrite.com',
    'http://unreasonabledrinkssf-es2.eventbrite.com'
])

示例#8
0
def calibrate_by_click(img,
                       mask,
                       edge_sfactor=0.5,
                       field_img_path='./demo/data/field.png'):

    h, w = img.shape[0:2]

    points2d, points3d = _set_correspondences(img,
                                              field_img_path=field_img_path)

    # ------------------------------------------------------------------------------------------------------------------
    # OpenCV initial calibration
    fx, fy = cam_utils.grid_search_focal_length(points3d,
                                                points2d,
                                                h,
                                                w,
                                                same_f=True)
    A = cam_utils.intrinsic_matrix_from_focal_length(fx, fy, h, w)

    points_3d_cv = points3d[:, np.newaxis, :].astype(np.float32)
    points_2d_cv = points2d[:, np.newaxis, :].astype(np.float32)

    _, rvec, tvec, _ = cv2.solvePnPRansac(points_3d_cv, points_2d_cv, A,
                                          None)  # 旋轉向量rvec和平移向量tvec得到變換矩陣
    rvec, tvec = np.squeeze(rvec), np.squeeze(tvec)
    R, _ = cv2.Rodrigues(rvec)
    T = np.array([tvec]).T
    cam_cv = cam_utils.Camera('tmp', A, R, T, h, w)

    # ------------------------------------------------------------------------------------------------------------------
    # Photometric refinement
    A__, R__, T__, field3d = calibrate_from_initialization(
        img, mask, A, R, T, edge_sfactor)
    cam = cam_utils.Camera('tmp', A__, R__, T__, h, w)

    # Sanity check, project the soccer field points
    p2_cv, _ = cam.project(field3d)
    p2_cv, _ = cam_utils.inside_frame(p2_cv, cam.height, cam.width)

    p2_opt, _ = cam_cv.project(field3d)
    p2_opt, valid_id = cam_utils.inside_frame(p2_opt, cam_cv.height,
                                              cam_cv.width)

    A_out, R_out, T_out = [None], [None], [None]

    class Index(object):
        def save_opt(self, event):
            A_out.append(cam.A)
            R_out.append(cam.R)
            T_out.append(cam.T)
            plt.close()

        def save_pnp(self, event):
            A_out.append(cam_cv.A)
            R_out.append(cam_cv.R)
            T_out.append(cam_cv.T)
            plt.close()

        def discard(self, event):
            plt.close()

    fig, ax = plt.subplots(1, 2)
    io.imshow(img, ax=ax[0], points=p2_opt)
    io.imshow(img, ax=ax[1], points=p2_cv)
    callback = Index()
    axdisc = plt.axes([0.6, 0.05, 0.1, 0.075])
    axcv = plt.axes([0.7, 0.05, 0.1, 0.075])
    axopt = plt.axes([0.81, 0.05, 0.1, 0.075])
    bnext = Button(axopt, 'Save opt')
    bnext.on_clicked(callback.save_opt)
    bprev = Button(axdisc, 'Discard')
    bprev.on_clicked(callback.discard)
    bpcv = Button(axcv, 'Save cv')
    bpcv.on_clicked(callback.save_pnp)
    plt.show()

    return A_out[-1], R_out[-1], T_out[-1]