示例#1
0
def reg_single_channel_wrap(model,
                            subs=cfg.subs,
                            bands=cfg.bands,
                            alpha=cfg.alpha,
                            name=''):

    # load data
    df = cf.load_df(f"reg_{model['tag']}", bands=bands, subs=subs)
    # filter out not significant
    df = df.query(f'p<{alpha}')

    time_start = time.time()
    for i in range(len(df)):
        cf.display_progress(
            f"{df.iloc[i]['sub']} {df.iloc[i]['ch_name']} {df.iloc[i]['band']}",
            i, len(df), time_start)
        for predictor in model['predictors_stepwise']:
            if df.iloc[i]['p' + predictor] < alpha and df.iloc[i][
                    'r2' + predictor] > 0:
                band = cfg.bands[[b['name'] for b in cfg.bands
                                  ].index(df.iloc[i]['band'])]
                reg_single_channel(df.iloc[i]['sub'],
                                   df.iloc[i]['ch_name'],
                                   band,
                                   model,
                                   plot=False)
    cf.concatenate_pdfs(cf.check_path(
        ['..', 'Figures' + cfg.out, f"reg_{model['tag']}"]),
                        'temp',
                        f"single_channel_reg-{model['tag']}{name}.pdf",
                        remove=True)
示例#2
0
def channel_summary_plot(a,
                         sub,
                         ch_name,
                         tag,
                         predictors,
                         bands=cfg.bands,
                         alpha=cfg.alpha):

    # load data
    df = cf.load_df(f"reg_{tag}", bands=bands, subs=[sub])
    # filter out regressions with negative score
    df = df.query(f"p<{alpha} and ch_name=='{ch_name}'")

    a.spines['right'].set_visible(False)
    a.spines['top'].set_visible(False)
    a.spines['bottom'].set_visible(False)
    a.spines['left'].set_visible(False)
    a.tick_params(axis='both', which='both', size=0, labelsize=7)
    a.set_yticks(range(len(bands)))
    a.set_yticklabels([band['name'] for band in bands])
    a.set_xticks(range(len(predictors) + 1))
    a.set_xticklabels(['full'] + [p for p in predictors], rotation=90)

    T = np.zeros((len(bands), len(predictors) + 1))

    for i_band, band in enumerate(bands):
        df_band = df.query(f"band=='{band['name']}'")
        #print(df_band)
        try:
            T[i_band, 0] = df_band['t']
        except:
            T[i_band, :] = -1
            continue
        for i_p, pred in enumerate(predictors):

            #print(pred,df_band[f'p_{pred}'].values, df_band[f'p_{pred}'].values)
            T[i_band, i_p + 1] = df_band[f't{pred}']
            if df_band.iloc[0][f'p{pred}'] > alpha:
                T[i_band, i_p + 1] = -1
                #print(df_band.iloc[0][f'p_{pred}']>alpha)

    palette = copy.copy(plt.cm.viridis)
    palette.set_under('w', 1.0)
    im = a.imshow(T, vmin=0, vmax=0.6, cmap=palette)

    divider = make_axes_locatable(a)
    cax = divider.append_axes("right", size="2%", pad=0.05)
    cbar = plt.colorbar(im, cax=cax)
    cbar.ax.tick_params(labelsize=5, length=0)
    cbar.outline.set_visible(False)
    cbar.set_label('t (s)', rotation=90, fontsize=7)
示例#3
0
def reg_clustering(model,
                   predictors=[],
                   subs=cfg.subs,
                   bands=cfg.bands,
                   alpha=cfg.alpha,
                   name='',
                   r2=1):

    # load data
    df = cf.load_df(f"reg_{model['tag']}", bands=bands, subs=subs)

    if predictors == 'all': predictors = model['predictors']

    #keys = ['r2','p','t'] + ['dr2_'+p,'p_'+p,'t_'+p for p in predictors]
    keys = ['r2'] * r2 + ['dr2_' + p for p in predictors]
    ps = ['p'] * r2 + ['p_' + p for p in predictors]

    for i in range(len(keys)):
        X = []
        for band in bands:
            df_band = df.query(f"band =='{band['name']}'")

            scores = df_band[keys[i]].values
            p_value = df_band[ps[i]].values
            p_value_full = df_band['p'].values

            X += [(p_value < alpha) * (p_value_full < alpha)]

            #x_ch += (scores*(p_values<alpha)*(p_values[0]<alpha)).tolist()
            #x_ch += (1.*(p_values<alpha)*(p_values[0]<alpha)).tolist()
            #x_ch += (-np.log10(p_values)*(p_values[0]<alpha)).tolist()

        X = np.array(X)

        # Standardize the data to have a mean of ~0 and a variance of 1
        X = StandardScaler().fit_transform(X.T).T

        #C = np.corrcoef(X)
        C = np.cov(X)

        U, S, Vh = scipy.linalg.svd(C)

        #idx = np.argsort(C.mean(axis=0))
        #idx = np.argsort(Vh[0,:])
        idx = [0, 10, 8, 6, 9, 7, 5, 4, 3, 2, 1]

        fig, ax = plt.subplots(1, 2, figsize=(8, 3))

        fig.suptitle(keys[i], fontsize=20)

        m = np.percentile(np.abs(C), 90)
        ax[0].imshow(C, vmin=-m, vmax=m, cmap='RdBu_r')
        #ax[0].imshow(C)
        ax[0].set_yticks(range(len(bands)))
        ax[0].set_yticklabels([band['name'] for band in bands])
        ax[0].set_xticks(range(len(bands)))
        ax[0].set_xticklabels([band['name'] for band in bands], rotation=90)

        im = ax[1].imshow(C[idx, :][:, idx], vmin=-m, vmax=m, cmap='RdBu_r')
        #ax[1].imshow(C[idx,:][:,idx])
        ax[1].set_yticks(range(len(bands)))
        ax[1].set_yticklabels([bands[i]['name'] for i in idx])
        ax[1].set_xticks(range(len(bands)))
        ax[1].set_xticklabels([bands[i]['name'] for i in idx], rotation=90)

        divider = make_axes_locatable(ax[1])
        cax = divider.append_axes("right", size="2%", pad=0.05)
        cbar = plt.colorbar(im, cax=cax)
        cbar.ax.tick_params(labelsize=10, length=0)
        cbar.outline.set_visible(False)
        cbar.set_label('corr coeff', rotation=90, fontsize=10)

        for a in ax:
            a.spines['right'].set_visible(False)
            a.spines['left'].set_visible(False)
            a.spines['top'].set_visible(False)
            a.spines['bottom'].set_visible(False)
            a.tick_params(axis='both', which='both', size=0, labelsize=10)

        fig.subplots_adjust(left=0.1,
                            bottom=0.1,
                            right=0.9,
                            top=0.9,
                            wspace=0.3,
                            hspace=0.4)
        plt.show()
示例#4
0
def reg_maps(model,
             predictors=[''],
             subs=cfg.subs,
             bands=cfg.bands,
             alpha=cfg.alpha,
             filter_tag='',
             fdr=False,
             plot=True,
             save=True,
             concat=True,
             time=True):
    """ Plot brain maps for variables (p_value, r2, ...) 
        stored in files for each band

    Parameters
    ----------
    alpha : float
        level of significance (leave out p>alpha)
    subs : list of str
        list of subjects to include f.e. [sub-01, sub-02]
    bands : list of dict
        list of bands to include   

    """

    print(f"\nBand comparison brain map for reg {model['tag']}")

    if predictors == 'all': predictors = [''] + model['predictors']

    # load data
    df = cf.load_df(f"reg_{model['tag']}", bands=bands, subs=subs)
    # get total number of channels
    L = len(df[df['band'] == bands[0]['name']])
    # filter out regressions with negative score
    df = df.query(f'r2>0  and p<{alpha}')

    if time:
        conditions, keys = [], []
        for p in predictors:
            conditions += 2 * ['p' + p]
            keys += ['r2' + p, 't' + p]
    else:
        conditions = ['p' + p for p in predictors]
        keys = ['r2' + p for p in predictors]

    # loop over figures
    for i, (k, c) in enumerate(zip(keys, conditions)):

        print(i, k)
        fig, ax = plt.subplots(len(bands),
                               2,
                               figsize=(12, 3 * len(bands)),
                               gridspec_kw={'width_ratios': [3, 1]})
        if len(bands) == 1: ax = np.array([ax])
        fig.suptitle(fr"reg {model['tag']}, {k}, {c} $\leq {alpha}$",
                     fontsize=20)

        for i_band, band in enumerate(bands):
            df_band = df[df['band'] == band['name']]

            if len(df_band) == 0: continue
            # extract data to plot
            x = df_band[k]
            coords = np.array([c for c in df_band['coords'].values])
            pl.brain_plot(ax[i_band, 0],
                          coords,
                          x,
                          ylabel=band['name'],
                          mask=(df_band[c] > alpha),
                          colorbar='' + (i_band == (len(bands) - 1)) * k,
                          mode='interval',
                          interval=[max(0, np.min(df[k])),
                                    np.max(df[k])])

            s = df_band[df_band[c] < alpha][k]
            x = np.linspace(0, np.max(df[k]), 20)
            h, x = np.histogram(s, bins=x, density=False)
            ax[i_band, 1].bar(x[:-1] + .5 * (x[1] - x[0]),
                              h,
                              width=.8 * (x[1] - x[0]))
            ax[i_band, 1].set_xlabel(k)
            ax[i_band, 1].spines['right'].set_visible(False)
            ax[i_band, 1].spines['top'].set_visible(False)
            ax[i_band, 1].tick_params(axis='both',
                                      which='both',
                                      size=0,
                                      labelsize=9)
            if k != 'r2': L = len(df)
            ax[i_band,
               1].set_title(f"{np.sum(h)}/{L}  {int(100*np.sum(h)/L)}%")

        fig.subplots_adjust(left=0.1, right=0.9, hspace=0.5)
        if save:
            fig_name = os.path.join(
                cf.check_path(
                    ['..', 'Figures' + cfg.out, f"reg_{model['tag']}"]),
                f"brain_map_reg_{model['tag']}_{str(i).zfill(2)}{'_temp'*concat}.pdf"
            )
            fig.savefig(fig_name, format='pdf', dpi=100)
        if plot: plt.show()
        else: plt.close()
    if save and concat:
        cf.concatenate_pdfs(cf.check_path(
            ['..', 'Figures' + cfg.out, f"reg_{model['tag']}"]),
                            'temp',
                            f"brain_map_reg-{model['tag']}.pdf",
                            remove=True)
示例#5
0
def reg_statistics(model,
                   predictors=[''],
                   subs=cfg.subs,
                   bands=cfg.bands,
                   alpha=cfg.alpha,
                   filter_tag='',
                   plot=True,
                   save=True):

    # load data
    df = cf.load_df(f"reg_{model['tag']}", bands=bands, subs=subs)

    L = len(df)
    # filter out regressions with negative score
    df = df.query(f'r2>0  and p<{alpha}')

    if predictors == 'all': predictors = [''] + model['predictors']
    keys = ['p' + p for p in predictors]
    conditions = ['r2' + p for p in predictors]

    fig, ax = plt.subplots(len(keys),
                           3,
                           figsize=(12, 3 * len(keys)),
                           gridspec_kw={'width_ratios': [1, 2, 0.5]})
    if len(keys) == 1: ax = np.array([ax])

    fig.suptitle(f"Regression stats summary", fontsize=15)

    colors = plt.get_cmap('viridis')(np.linspace(0, 1, len(bands)))

    for i, (k, c) in enumerate(zip(keys, conditions)):

        # scatter r2 vs p -------------------------------------------------------------
        for i_band, band in enumerate(bands):
            ax[i, 0].scatter(df[df['band'] == band['name']][k],
                             df[df['band'] == band['name']][c],
                             c=[colors[i_band]],
                             alpha=0.3)
        ax[i, 0].set_xlabel(k)
        ax[i, 0].set_ylabel(c)
        ax[i, 0].axvline(alpha, color='k', linewidth=0.5)
        ax[i, 0].axhline(0, color='k', linewidth=0.5)
        ax[i, 0].spines['right'].set_visible(False)
        ax[i, 0].spines['top'].set_visible(False)
        ax[i, 0].tick_params(axis='both', which='both', size=0, labelsize=9)

        # number of significant channels ----------------------------------------------
        n = []

        for sub in subs:

            # load subject params
            dp = cf.sub_params(sub)

            # significant channels for subjec-band pair
            n_sub = []

            # iterate over bands -----------------------------------------------
            for i_band, band in enumerate(bands):
                n_sub += [
                    np.sum(
                        np.array(df[(df['sub'] == sub) &
                                    (df['band'] == band['name'])][k]) < alpha)
                ]
            # go to next band --------------------------------------------------
            n += [n_sub]
            # go to next subject ======================================================

        n = np.array(n).T

        # width and positions of bars
        width = 0.8 / len(bands)
        x = np.arange(len(subs))

        colors = plt.get_cmap('viridis')(np.linspace(0, 1, len(bands)))

        for i_band, band in enumerate(bands):
            ax[i, 1].bar(x + i_band * width,
                         n[i_band],
                         width,
                         color=colors[i_band])
            ax[i, 2].bar(i_band * width,
                         np.sum(n[i_band]),
                         width,
                         label=band['name'],
                         color=colors[i_band])

        ax[i, 1].set_ylabel("# significant channels")
        ax[i, 1].set_xticks(np.arange(len(subs)) + 0.4)
        ax[i, 1].set_xticklabels(subs, rotation=45)
        ax[i, 1].spines['right'].set_visible(False)
        ax[i, 1].spines['top'].set_visible(False)
        ax[i, 1].tick_params(axis='both', which='both', size=0, labelsize=9)

        ax[i, 2].set_xticks([0.4])
        ax[i, 2].set_xlim([-0.2, 1])
        ax[i, 2].set_xticklabels(['Total'])
        ax[i, 2].spines['right'].set_visible(False)
        ax[i, 2].spines['top'].set_visible(False)
        ax[i, 2].tick_params(axis='both', which='both', size=0, labelsize=9)

        if i > 0: L = len(df)
        ax[i, 2].set_title(f"{np.sum(n)}/{L}  {int(100*np.sum(n)/L)}%")

    ax[0, 2].legend(frameon=False, loc=(1, 0.2), fontsize=9)
    fig.subplots_adjust(left=0.1, right=0.9, wspace=0.3, hspace=0.5)

    # save figure
    fig_name = os.path.join(
        cf.check_path(['..', 'Figures' + cfg.out, f"reg_{model['tag']}"]),
        f"stats_reg_{model['tag']}.pdf")
    if save: fig.savefig(fig_name, format='pdf', dpi=100)
    if plot: plt.show()
    else: plt.close()
示例#6
0
def num_significant_channels(key,
                             test,
                             tag,
                             split=None,
                             alpha=sp.alpha,
                             subs=sp.subject_list,
                             bands=sp.bands):
    """ Make a bar plot with number of significant channels
        per subject per band for some test or regression

    Parameters
    ----------
    key : str
        name of the column to extract
    test : str
        name of the test/regression that works as a label for files
        queries : dict
        generated with cf.compose_queries, contains mne queries, file tag, queries list
    split : int or str
        if int divide the time window into 'split' chunks and run one test in each
        if string separate epochs by values of metadata column 'split',
        f.ex. split = 'w_position' run the test for each word position
    alpha : float
        level of significance (leave out p>alpha)
    subs : list of str
        list of subjects to include f.e. [sub-01, sub-02]
    bands : list of dict
        list of bands to include   
    """

    print(f"\n{test} {tag} summary figure")

    df = cf.load_df(test + '_' + tag)

    if split == None: labels = ['']  # no split
    elif isinstance(split, int):
        labels = list(np.unique(df['tw'].to_numpy()))  # split by time windows
    elif isinstance(split, str):
        labels = list(np.unique(df[split].to_numpy()))  # split by conditions

    num_plots = len(labels)

    fig, ax = plt.subplots(num_plots,
                           1,
                           figsize=(len(subs), 3 * num_plots),
                           sharex=True)
    fig.suptitle(fr"{test} {tag}, {key} $\leq {alpha}$")

    if split == None: ax = np.array([ax])

    # loop over plots
    for i_plot, label in enumerate(labels):

        # number of significant channels
        n = []

        for sub in subs:

            # load subject params
            dp = cf.sub_params(sub)

            # significant channels for subjec-band pair
            n_sub = []

            # iterate over bands -----------------------------------------------
            for i_band, band in enumerate(bands):
                if split == None:
                    n_sub += [
                        np.sum(
                            np.array(df[(df['sub'] == sub) & (
                                df['band'] == band['name'])][key]) < alpha)
                    ]
                    title = ''
                elif isinstance(split, int):
                    n_sub += [
                        np.sum(
                            np.array(df[
                                (df['sub'] == sub)
                                & (df['band'] == band['name'])
                                & ([x == label for x in df['tw'].to_numpy()])]
                                     [key]) < alpha)
                    ]
                    title = str(label) + ' s'
                elif isinstance(split, str):
                    n_sub += [
                        np.sum(
                            np.array(df[(df['sub'] == sub)
                                        & (df['band'] == band['name'])
                                        & (df[split] == label)][key]) < alpha)
                    ]
                    title = f"{split} = {label}"
                # go to next band --------------------------------------------------
            n += [n_sub]
            # go to next subject ======================================================

        n = np.array(n).T

        # width and positions of bars
        width = 0.8 / len(bands)
        x = np.arange(len(subs))

        colors = plt.get_cmap('viridis')(np.linspace(0, 1, len(bands)))

        for i_band, band in enumerate(bands):
            ax[i_plot].bar(x + i_band * width,
                           n[i_band],
                           width,
                           label=band['name'],
                           color=colors[i_band])

        ax[i_plot].set_ylabel("# significant channels")
        ax[i_plot].set_title(title)
        ax[i_plot].set_xticks(np.arange(len(subs)) + 0.4)
        ax[i_plot].set_xticklabels(subs)
        ax[i_plot].spines['right'].set_visible(False)
        ax[i_plot].spines['top'].set_visible(False)
        ax[i_plot].tick_params(axis='both', which='both', size=0, labelsize=9)

    ax[i_plot].legend(frameon=False, loc=(1, 0.2), fontsize=9)
    fig.subplots_adjust(right=0.8)

    # save figure
    fig_name = os.path.join(cf.check_path(['..', 'Figures', test + sp.out]),
                            f"summary_{test}_{tag}_{key}.pdf")
    fig.savefig(fig_name, format='pdf', dpi=100)
    if sp.plot: plt.show()
    plt.close()
示例#7
0
def band_comparison_matrix(key,
                           file_tag,
                           path,
                           title='',
                           label='',
                           subs=sp.subject_list,
                           bands=sp.bands,
                           log10=False):
    """ Compare variables (p_value, r2, ...) between bands 
        with scatter plots

    Parameters
    ----------
    key : str
        name of the column to extract
    file_tag : str
        name of the figure will be brain_map_{file_tag}.pdf
    subs : list of str
        list of subjects to include f.e. [sub-01, sub-02]
    bands : list of dict
        list of bands to include   

    """

    print(f'\nBand comparison matrix for {file_tag}')

    if len(bands) == 1: sys.exit('At least 2 bands needed only 1 was passed')

    df = cf.load_df(file_tag, subs=subs, bands=bands)

    # fig 2: comparison accros bands ---------------------------------------------------------------------
    fig, ax = plt.subplots(len(bands) - 1,
                           len(bands) - 1,
                           figsize=(2.5 * (len(bands) - 1),
                                    2.5 * (len(bands) - 1)))
    fig.suptitle(title, fontsize=20)
    clear_axes(ax)

    for i, band in enumerate(bands[:-1]):

        # data for first band
        x = df[df['band'] == band['name']][key]
        if log10: x = -np.log10(x)

        ax[-1, i].set_xlabel(band['name'])
        ax[i, 0].set_ylabel(bands[i + 1]['name'])

        # comparison across bands
        for j in range(i, len(bands) - 1):
            y = df[df['band'] == bands[j + 1]['name']][key]
            if log10: y = -np.log10(y)

            ax[j, i].scatter(x, y)
            #ax[j,i].hist2d(x,y,bins=np.linspace(min(x.min(),y.min()),max(x.max(),y.max()),10),cmap='Reds')

            # draw diagonal line
            ax[j, i].axis('equal')
            ax[j, i].plot([0, 1], [0, 1], 'k--', transform=ax[j, i].transAxes)
            ax[j, i].spines['left'].set_visible(True)
            ax[j, i].spines['bottom'].set_visible(True)
            #ax[i,j].set_xlim([0,np.log10(sp.n_permutations)])
            #ax[i,j].set_ylim([0,np.log10(sp.n_permutations)])
            #ax[i,j].set_xticks([0,1,2])
            #ax[i,j].set_yticks([0,1,2])

    fig.subplots_adjust(left=0.05,
                        bottom=0.05,
                        right=0.95,
                        top=0.95,
                        wspace=0.3,
                        hspace=0.3)

    # save figure
    fig_name = os.path.join(cf.check_path(path), f"matrix_{file_tag}.pdf")
    fig.savefig(fig_name, format='pdf', dpi=100)
    if sp.plot: plt.show()
    plt.close()
示例#8
0
def band_comparison_lateralization(key,
                                   test,
                                   tag,
                                   split=None,
                                   alpha=sp.alpha,
                                   subs=sp.subject_list,
                                   bands=sp.bands):
    """ Bar plots for proportion of significant channels on
        left right axis and frontal occipital axis

    Parameters
    ----------
    key : str
        name of the column to extract
    test : str
        name of the test/regression that works as a label for files
    tag : str
        test tag
    alpha : float
        level of significance (leave out p>alpha)
    subs : list of str
        list of subjects to include f.e. [sub-01, sub-02]
    bands : list of dict
        list of bands to include   

    """

    print(f"\nLateralization figure for {test} {tag}")

    df = cf.load_df(f"{test}_{tag}", subs=subs, bands=bands)

    if split == None: labels = ['']  # no split
    elif isinstance(split, int):
        labels = list(np.unique(df['tw'].to_numpy()))  # split by time windows
    elif isinstance(split, str):
        labels = list(np.unique(df[split].to_numpy()))  # split by conditions

    num_plots = len(labels)

    if len(sp.bands) == 1: ax = ax[np.newaxis, :]

    # loop over plots
    for i_plot, label in enumerate(labels):

        fig, ax = plt.subplots(len(bands), 2, figsize=(5, 3 * len(bands)))

        fig.suptitle(fr"{test} {tag}, $p \leq {alpha}$", fontsize=20)

        # for axis limits
        x, y = 0, 0

        for i_band, band in enumerate(bands):
            # filter df by band and split
            if split == None:
                df_band = df[df['band'] == band['name']]
                title = ''
                figtag = ''
            elif isinstance(split, int):
                df_band = df[(df['band'] == band['name'])
                             & ([x == label for x in df['tw'].to_numpy()])]
                title = '' + (str(label) + ' s') * (i_band == 0)
                figtag = f'_tw{i_plot}'
            elif isinstance(split, str):
                df_band = df[(df['band'] == band['name'])
                             & (df[split] == label)]
                title = '' + f"{split} = {label}" * (i_band == 0)
                figtag = f"_{split}-{label}"

            df_sig = df_band[df_band[key] <= alpha]

            # get channel positions
            coords_all = np.array([c for c in df_band['coords']])
            coords_sig = np.array([c for c in df_sig['coords']])

            # skip if there aren't significant channels
            if len(coords_sig.shape) != 2: continue

            # left rigth
            h_all, bins = np.histogram(coords_all[:, 0], bins=6, density=False)
            h_sig, bins = np.histogram(coords_sig[:, 0],
                                       bins=bins,
                                       density=False)

            width = (bins[1] - bins[0])

            ax[i_band, 0].bar(bins[:-1] + width / 2,
                              h_sig / h_all,
                              width=width * 0.9,
                              color='firebrick')
            ax[i_band, 0].set_xticks([bins[0], bins[-1]])
            ax[i_band, 0].set_xticklabels(['L', 'R'])
            #ax[i_band,0].set_ylim([0,1])
            ax[i_band, 0].spines['right'].set_visible(False)
            ax[i_band, 0].spines['top'].set_visible(False)
            ax[i_band, 0].tick_params(axis='both',
                                      which='both',
                                      size=0,
                                      labelsize=9)

            y = max(y, np.max(h_sig / h_all))

            # frontal occipital
            h_all, bins = np.histogram(coords_all[:, 1], bins=6, density=False)
            h_sig, bins = np.histogram(coords_sig[:, 1],
                                       bins=bins,
                                       density=False)

            width = (bins[1] - bins[0])

            ax[i_band, 1].barh(bins[:-1] + width / 2,
                               h_sig / h_all,
                               height=width * 0.9,
                               color='firebrick')
            ax[i_band, 1].set_yticks([bins[0], bins[-1]])
            ax[i_band, 1].set_yticklabels(['O', 'F'])
            #ax[i_band,1].set_xlim([0,1])
            ax[i_band, 1].spines['right'].set_visible(False)
            ax[i_band, 1].spines['top'].set_visible(False)
            ax[i_band, 1].tick_params(axis='both',
                                      which='both',
                                      size=0,
                                      labelsize=9)

            x = max(x, np.max(h_sig / h_all))

        for i_band in range(len(bands)):
            ax[i_band, 0].set_ylim([0, y])
            ax[i_band, 1].set_xlim([0, x])

        fig.subplots_adjust(left=0.1,
                            bottom=0.15,
                            right=0.95,
                            top=0.85,
                            wspace=0.4,
                            hspace=0.4)

        # save figure
        fig_name = os.path.join(
            cf.check_path(['..', 'Figures', f"{test}_{tag}" + sp.out]),
            f"lateralization_{test}_{tag}_{key}.pdf")
        fig.savefig(fig_name, format='pdf', dpi=100)
        if sp.plot: plt.show()
        plt.close()
示例#9
0
def contrast(key1,
             key2,
             test1,
             test2,
             model1,
             model2,
             alpha=sp.alpha,
             subs=sp.subject_list,
             bands=sp.bands,
             plot=True,
             save=True):
    """ Plot brain maps for variables (p_value, r2, ...) 
        stored in files for each band

    Parameters
    ----------
    key : str
        name of the column to extract
    test : str
        name of the test/regression that works as a label for files
    model1, model2 : dict
        contains mne queries, file tag
    alpha : float
        level of significance (leave out p>alpha)
    subs : list of str
        list of subjects to include f.e. [sub-01, sub-02]
    bands : list of dict
        list of bands to include   

    """

    print(f"\nContrast {test1} {model1['tag']} {test2} {model2['tag']}")

    df1 = cf.load_df(f"{test1}_{model1['tag']}", subs=subs, bands=bands)
    df2 = cf.load_df(f"{test2}_{model2['tag']}", subs=subs, bands=bands)

    fig, ax = plt.subplots(len(bands), 1, figsize=(10, 3 * len(bands)))
    if len(bands) == 1: ax = np.array([ax])

    fig.suptitle(
        fr"{test1} {key1} {model1['tag']} vs {test2} {key3} {model2['tag']}, $p \leq {alpha}$",
        fontsize=20)

    for i_band, band in enumerate(bands):

        df1_band = df1[df1['band'] == band['name']]
        df2_band = df2[df2['band'] == band['name']]

        mask1 = df1_band[key].values < alpha
        mask2 = df2_band[key].values < alpha

        # for regression results filter significant channels
        if test == 'reg':
            mask1 *= (df1_band['r2'].values > 0) * (df1_band['p'].values <
                                                    alpha)
            mask2 *= (df2_band['r2'].values > 0) * (df2_band['p'].values <
                                                    alpha)

        x = 1. * mask1 + 2 * mask2

        cb = ''
        if i_band == len(bands) - 1:
            cb = [model1['tag'], model2['tag'], 'both']

        pl.brain_plot(ax[i_band],
                      cf.eval_coords(df1_band['coords']),
                      x,
                      ylabel=band['name'],
                      mask=(x < 0.5),
                      mode='contrast',
                      colorbar=cb)

    #fig.subplots_adjust(left=0.05, bottom=0.05, right=0.9, top=0.9, wspace=0.3, hspace=0.3)

    # save figure
    if save:
        fig_name = os.path.join(
            cf.check_path(['..', 'Figures', test1 + sp.out]),
            f"contrast_{test1}-{model1['tag']}_{test2}-{model2['tag']}.pdf")
        fig.savefig(fig_name, format='pdf', dpi=100)
    if plot: plt.show()
    else: plt.close()
示例#10
0
def band_comparison_brain(key,
                          test,
                          file_tag,
                          split=None,
                          alpha=sp.alpha,
                          subs=sp.subject_list,
                          bands=sp.bands):
    """ Plot brain maps for variables (p_value, r2, ...) 
        stored in files for each band

    Parameters
    ----------
    key : str
        name of the column to extract
    test : str
        name of the test/regression that works as a label for files
    queries : dict
        generated with cf.compose_queries, contains mne queries, file tag, queries list
    split : int or str
        if int divide the time window into 'split' chunks and run one test in each
        if string separate epochs by values of metadata column 'split',
        f.ex. split = 'w_position' run the test for each word position
    alpha : float
        level of significance (leave out p>alpha)
    subs : list of str
        list of subjects to include f.e. [sub-01, sub-02]
    bands : list of dict
        list of bands to include   

    """

    print(f"\nBand comparison brain map for {test} {file_tag}")

    df = cf.load_df(f"{test}-{file_tag}", subs=subs, bands=bands)

    if split == None: labels = ['']  # no split
    elif isinstance(split, int):
        labels = list(np.unique(df['tw'].to_numpy()))  # split by time windows
    elif isinstance(split, str):
        labels = list(np.unique(df[split].to_numpy()))  # split by conditions

    num_plots = len(labels)

    # threshold is given in units of p, has to be transformed
    if key[0] == 'p': alpha = -np.log10(alpha)

    if len(sp.bands) == 1: ax = ax[np.newaxis, :]

    # loop over plots
    for i_plot, label in enumerate(labels):

        fig, ax = plt.subplots(len(bands), 1, figsize=(10, 3 * len(bands)))

        fig.suptitle(fr"{test} {file_tag}, $p \leq {alpha}$", fontsize=20)

        for i_band, band in enumerate(bands):
            # filter df by band and split
            if split == None:
                df_band = df[df['band'] == band['name']]
                title = ''
                figtag = ''
            elif isinstance(split, int):
                df_band = df[(df['band'] == band['name'])
                             & ([x == label for x in df['tw'].to_numpy()])]
                title = '' + (str(label) + ' s') * (i_band == 0)
                figtag = f'_tw{i_plot}'
            elif isinstance(split, str):
                df_band = df[(df['band'] == band['name'])
                             & (df[split] == label)]
                title = '' + f"{split} = {label}" * (i_band == 0)
                figtag = f"_{split}-{label}"

            # extract data to plot
            x = df_band[key]

            # for p values
            if key[0] == 'p':
                # transform p values and threshold
                x = -np.log10(x)
                cbar_label = r'-log$_{10}(p)$'

            # get channel positions
            coords = np.array([c for c in df_band['coords']])

            pl.brain_plot(ax[i_band],
                          coords,
                          np.clip(x, alpha, 3),
                          title=title,
                          ylabel=band['name'],
                          colorbar='' +
                          (i_band == (len(bands) - 1)) * cbar_label,
                          mask=(x < alpha),
                          mode='interval',
                          interval=[alpha, 3])

        #fig.subplots_adjust(left=0.05, bottom=0.05, right=0.9, top=0.9, wspace=0.3, hspace=0.3)

        # save figure
        fig_name = os.path.join(
            cf.check_path(['..', 'Figures', test + sp.out]),
            f"brain_map_{test}_{file_tag}{figtag}.pdf")
        fig.savefig(fig_name, format='pdf', dpi=100)
        if sp.plot: plt.show()
        plt.close()