示例#1
0
文件: sm.py 项目: baofff/BiSM
 def __init__(self, models):
     super(MDSM, self).__init__(models)
     self.model = models["model"]
     self.sigma0 = config.get("loss", "sigma0")
     self.sigma_begin = config.get("loss", "sigma_begin")
     self.sigma_end = config.get("loss", "sigma_end")
     self.dist = config.get("loss", "dist")
示例#2
0
文件: bism.py 项目: baofff/BiSM
 def __init__(self, models):
     super(BiMDSM, self).__init__(models)
     self.sigma0 = config.get("loss", "sigma0")
     self.sigma_begin = config.get("loss", "sigma_begin")
     self.sigma_end = config.get("loss", "sigma_end")
     self.dist = config.get("loss", "dist")
     self.inner_loss_div_sigmas = config.get("loss", "inner_loss_div_sigmas", default=True)
示例#3
0
    def get(self):
        api = QQAPIClient(config.get('qq_apiid'),
                          config.get('qq_appkey'),
                          redirect_uri=config.get('qq_callback_url'))
        code = self.request.query_arguments.get('code')[0]
        print code
        access_token = api.request_access_token(code)
        api.set_access_token(access_token['access_token'],
                             access_token['expires_in'])
        user_info = api.get.user__get_user_info()
        openid = api.get_openid()

        now = datetime.utcnow()
        user = User.objects.filter(third_info__third_type='qq',
                                 third_info__openid=openid).first()
        if not user:
            user = User(create_on=now, modify_on=now, last_login=now)
        else:
            user.modify_on = now
            user.last_login = now

        user.username = openid
        user.nick_name = user_info.get('nickname', '')
        user.email = '*****@*****.**' % openid
        gender = 'm' if user_info.get('gender') == u'男' else 'f'
        user.gender = gender
        user.avatar = user_info.get('figureurl_qq_2', '')
        user.third_info = {'third_type': 'qq', 'info': dict(user_info), 'openid': openid}
        user.save()

        # set user cookie
        self.set_secure_cookie(config.get('uname'), openid)
        self.write(json.dumps(make_success_response(user_info)))
示例#4
0
    def __init__(self):
        super(BaseRunner, self).__init__()
        self.batch_size = config.get("training", "batch_size")
        self.n_its = config.get("training", "n_its")
        self.n_ckpts = config.get("training", "n_ckpts", default=10)
        self.log_invl = config.get("interval", "log", default=100)
        self.name = config.name
        self.device = config.device
        self.workspace_root = config.workspace_root
        self.roots = {}

        # set path
        self.model_root = os.path.join(self.workspace_root, "models")
        if not os.path.exists(self.model_root):
            os.makedirs(self.model_root)
        self.ckpt_path = os.path.join(self.model_root,
                                      "{}.ckpt.pth".format(self.name))
        self.model_path = os.path.join(self.model_root,
                                       "{}.pth".format(self.name))

        # set dataset
        self.data_factory = None
        self.dataset = None
        self.tr = None
        self.val = None
        self.te = None
        self.labelled_tr = None
        self.labelled_te = None
        self.init_dataset()

        # set model
        self.models = {}
        self.init_model()
        self.model = self.models.get("model")
        self.q = self.models.get("q")

        # set criterion
        self.criterion = None
        self.init_criterion()

        # states of training
        self.it = None
        self.best_val_loss = None

        # set evaluator
        self.evaluator_root = os.path.join(self.workspace_root, "evaluation")
        self.evaluator_family = config.get("evaluator",
                                           "family",
                                           default="BaseEvaluator")
        self.evaluator = eval(self.evaluator_family)(self, self.evaluator_root)
示例#5
0
    def __init__(self):
        super(EBMResNet, self).__init__()
        self.channels = config.get("model", "channels")
        self.feature_net = config.get("model", "feature_net")
        self.scalar_net = config.get("model", "scalar_net")
        hw = self.v_shape[-1]
        in_channels = self.v_shape[0]

        self.af = nn.ELU()
        self.v2f = nn.DataParallel(
            eval(self.feature_net)(in_channels, self.channels))
        self.f2e = eval(self.scalar_net)(
            in_features=(hw // 8)**2 * 8 * self.channels,
            features=(hw // 8)**2 * 4 * self.channels)
示例#6
0
 def __init__(self):
     super(GRBM, self).__init__()
     self.fix_std = config.get("model", "fix_std", default=False)
     if self.fix_std:
         std = config.get("model", "std")
         self.log_std = torch.ones(self.v_dim).to(self.device) * np.log(std)
     else:
         self.log_std = nn.Parameter(torch.zeros(self.v_dim),
                                     requires_grad=True)
     self.b_h = nn.Parameter(torch.zeros(self.h_dim), requires_grad=True)
     self.b_v = nn.Parameter(torch.zeros(self.v_dim), requires_grad=True)
     self.W = nn.Parameter(torch.zeros(self.v_dim, self.h_dim),
                           requires_grad=True)
     self.init_parameters()
     self.log_partition_ = None
示例#7
0
    def init_dataset(self):
        self.dataset = config.get("data", "dataset")
        self.data_factory = eval(self.dataset)()

        if config.get("data", "use_val", default=False):
            self.tr = self.data_factory.get_train_data()
            self.val = self.data_factory.get_val_data()
        else:
            self.tr = self.data_factory.get_train_val_data()
            self.val = None
        self.te = self.data_factory.get_test_data()

        if self.data_factory.allow_labelled():
            self.labelled_tr = self.data_factory.get_train_val_data(
                labelled=True)
            self.labelled_te = self.data_factory.get_test_data(labelled=True)
示例#8
0
文件: base.py 项目: baofff/BiSM
def _init_optim_bilevel(criterion):
    optimizer = config.get("optim", "optimizer")
    scheduler = config.get("optim", "scheduler")
    lr = config.get("optim", "lr")
    lr_q = config.get("optim", "lr_q", default=lr)
    weight_decay = config.get("optim", "weight_decay", default=0.)
    model, q = criterion.models["model"], criterion.models["q"]
    # init optimizers
    if optimizer == "Adam":
        betas = tuple(config.get("optim", "betas", default=(0.9, 0.95)))
        criterion.opts["model"] = optim.Adam(model.parameters(),
                                             lr=lr,
                                             weight_decay=weight_decay,
                                             betas=betas)
        criterion.opts["q"] = optim.Adam(q.parameters(),
                                         lr=lr_q,
                                         weight_decay=weight_decay,
                                         betas=betas)
    elif optimizer == "RMSProp":
        criterion.opts["model"] = optim.RMSprop(model.parameters(),
                                                lr=lr,
                                                weight_decay=weight_decay)
        criterion.opts["q"] = optim.RMSprop(q.parameters(),
                                            lr=lr_q,
                                            weight_decay=weight_decay)
    elif optimizer == "SGD":
        momentum = config.get("optim", "momentum", default=0.01)
        criterion.opts["model"] = optim.SGD(model.parameters(),
                                            lr=lr,
                                            momentum=momentum,
                                            weight_decay=weight_decay)
        criterion.opts["q"] = optim.SGD(q.parameters(),
                                        lr=lr_q,
                                        momentum=momentum,
                                        weight_decay=weight_decay)
    else:
        raise NotImplementedError
    # init schedulers
    n_its = config.get("training", "n_its")
    if scheduler == "step":
        criterion.schs["model"] = optim.lr_scheduler.StepLR(
            criterion.opts["model"], n_its // 6)
        criterion.schs["q"] = optim.lr_scheduler.StepLR(
            criterion.opts["q"], n_its // 6)
    elif scheduler == "cosine":
        criterion.schs["model"] = optim.lr_scheduler.CosineAnnealingLR(
            criterion.opts["model"], n_its, eta_min=1e-6)
        criterion.schs["q"] = optim.lr_scheduler.CosineAnnealingLR(
            criterion.opts["q"], n_its, eta_min=1e-6)
    elif scheduler == "const":
        criterion.schs["model"] = optim.lr_scheduler.StepLR(
            criterion.opts["model"], n_its)
        criterion.schs["q"] = optim.lr_scheduler.StepLR(
            criterion.opts["q"], n_its)
    else:
        raise NotImplementedError
示例#9
0
 def log_likelihood(self, it, **kwargs):
     ais = config.get("others", "ais", default=False)
     if ais:
         self.model.update_log_partition()
     ll = evaluate(self.te, self.runner, lambda v: self.model.log_likelihood(v, ais=ais),
                   batch_size=min(10000, len(self.te)))
     logging.info("[log_likelihood] [it: {}] [log_likelihood: {}]".format(it, ll))
     writer.add_scalar("log_likelihood", ll, global_step=it)
示例#10
0
文件: auth.py 项目: seraphln/chat2all
def build_sign(*args):
    """ build a self signed cookie for verify login state """
    skey = config.get('skey')

    tm = datetime.now().strftime('%Y%m%d')
    signed_args = list(args)
    signed_args.append(tm)
    signed_args.append(skey)
    s = '/'.join(signed_args).lower()
    sign = md5.md5(s).hexdigest()
    return sign
示例#11
0
文件: main.py 项目: baofff/BiSM
def main():
    args = init()
    runner = BaseRunner()
    if args.mode == "train":
        try:
            runner.fit()
        except:
            logging.error("training is failed")
            logging.error(traceback.format_exc())
    elif args.mode == "valid":
        try:
            valid_sample(runner)
        except:
            logging.error("validation is failed")
            logging.error(traceback.format_exc())
    elif args.mode == "test":
        test_root = os.path.join(config.workspace_root, "test")
        if not os.path.exists(test_root):
            os.makedirs(test_root)
        try:
            runner.load_model()
            runner.eval()
            mean_loss = runner.criterion.evaluate(runner.te, runner).item()
            np.save(os.path.join(test_root, "test_mean_loss.npy"), mean_loss)
            for fn, flag in config.get("evaluate_options").items():
                if flag:
                    eval("runner.evaluator.{}".format(fn))(
                        name="{}.png".format(fn), it=0)
        except:
            np.save(os.path.join(test_root, "test_mean_loss.npy"),
                    float("nan"))
            logging.error("testing is failed")
            logging.error(traceback.format_exc())
    elif args.mode == "test_ckpt":  # test a specific ckpt
        ckpt = config.get("others", "tested_ckpt")
        test_root = os.path.join(config.workspace_root, "test", ckpt)
        sample_from_ckpt(runner, ckpt, 50000,
                         os.path.join(test_root, "samples"))
    else:
        raise NotImplementedError
    return 0
示例#12
0
文件: bism.py 项目: baofff/BiSM
def _update(v, runner, criterion):
    opt_model, opt_q = criterion.opts["model"], criterion.opts["q"]
    sch_model, sch_q = criterion.schs["model"], criterion.schs["q"]

    # update q
    runner.model.requires_grad_(False)
    runner.q.requires_grad_(True)
    for i in range(config.get("update", "n_inner_loops")):
        opt_q.zero_grad()
        criterion.mid_vals["inner_loss"] = inner_loss = criterion.inner_loss(v).mean()
        inner_loss.backward()  # backward
        if config.get("update", "gradient_clip", default=False):
            clip_grad_norm_(runner.q.parameters(), 0.5)
        opt_q.step()  # step
    sch_q.step()

    # update model
    runner.model.requires_grad_(True)
    runner.q.requires_grad_(True)
    backup_q_state_dict = runner.q.state_dict()
    with higher.innerloop_ctx(runner.q, opt_q) as (fq, diffopt_q):
        criterion.q = fq
        for i in range(config.get("update", "n_unroll")):
            inner_loss = criterion.inner_loss(v).mean()
            diffopt_q.step(inner_loss)
        criterion.loss_val = loss = criterion.loss(v).mean()
        opt_model.zero_grad()
        runner.model.requires_grad_(True)
        runner.q.requires_grad_(False)
        loss.backward()
        if config.get("update", "gradient_clip", default=False):
            clip_grad_norm_(runner.model.parameters(), 0.5)
        opt_model.step()
        sch_model.step()
    runner.q.load_state_dict(backup_q_state_dict)
    criterion.q = runner.q

    criterion.mid_vals["grad_model"] = grad_norm(runner.model)
    criterion.mid_vals["grad_q"] = grad_norm(runner.q)
示例#13
0
    def __init__(self):
        super(CelebA, self).__init__()
        self.binarized = config.get("data", "binarized", default=False)
        self.gauss_noise = config.get("data", "gauss_noise", default=False)
        self.noise_std = config.get("data", "noise_std", default=0.01)
        self.flattened = config.get("data", "flattened", default=False)

        if self.binarized:
            assert not self.gauss_noise

        self.data_path = os.path.join("workspace", "datasets", "celeba")

        # Get datasets
        im_transformer = transforms.Compose([
            transforms.CenterCrop(140),
            transforms.Resize(32),
            transforms.RandomHorizontalFlip(p=0.5),
            transforms.ToTensor()
        ])
        self.train = datasets.CelebA(self.data_path,
                                     split="train",
                                     target_type=[],
                                     transform=im_transformer,
                                     download=True)
        self.val = datasets.CelebA(self.data_path,
                                   split="valid",
                                   target_type=[],
                                   transform=im_transformer,
                                   download=True)
        self.test = datasets.CelebA(self.data_path,
                                    split="test",
                                    target_type=[],
                                    transform=im_transformer,
                                    download=True)

        self.train = UnlabeledDataset(self.train)
        self.test = UnlabeledDataset(self.test)
        self.val = UnlabeledDataset(self.val)
示例#14
0
文件: main.py 项目: baofff/BiSM
def init():
    parser = argparse.ArgumentParser(description=globals()['__doc__'])

    parser.add_argument('--config',
                        type=str,
                        required=True,
                        help='Path to the config file')
    parser.add_argument('--workspace',
                        type=str,
                        required=True,
                        help='Path to the workspace')
    parser.add_argument('--mode',
                        type=str,
                        default='train',
                        help='Train, valid or test the model (or others)')

    args = parser.parse_args()

    # set config
    config_ = load_yaml(args.config)
    config_["device"] = torch.device(
        'cuda') if torch.cuda.is_available() else torch.device('cpu')
    config_["workspace_root"] = args.workspace
    config.set_config(config_)

    # set writer
    summary_root = os.path.join(config.workspace_root, "summary")
    if not os.path.exists(summary_root):
        os.makedirs(summary_root)
    writer.set_path(summary_root)

    # set seed
    seed = config.get("others", "seed", default=1234)
    torch.manual_seed(seed)
    np.random.seed(seed)
    random.seed(seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed_all(seed)

    # set logger
    log_root = os.path.join(config.workspace_root, "logs")
    if not os.path.exists(log_root):
        os.makedirs(log_root)
    log_path = os.path.join(log_root, "{}.log".format(args.mode))
    set_logger(log_path)

    logging.info("running @ {}".format(socket.gethostname()))
    logging.info(config)

    return args
示例#15
0
 def sample(self, name, **kwargs):
     fname = self._prepare("sample", name, "png")
     if config.get("others", "record_gibbs", default=False):
         name, ext = os.path.splitext(fname)
         samples, v0 = self.model.sample(50, ret_v0=True, record_gibbs=True, v0=self.sample_v0(50))
         v0 = self.data_factory.unpreprocess(v0)
         grid_v0 = make_grid(v0, 5)
         for gibbs_step, v in samples:
             v = self.data_factory.unpreprocess(v)
             grid_v = make_grid(v, 5)
             grid = make_grid([grid_v0, grid_v])
             save_image(grid, "{}_gibbs_{}{}".format(name, gibbs_step, ext))
     else:
         super(RBMEvaluator, self).sample(name, **kwargs)
示例#16
0
def make_app():
    """ make an app instance to start the server """
    settings = {'static_path': join(dirname(__file__), 'static'),
                'template_path': join(dirname(__file__), 'templates')}

    cookie_secret = config.get('cookie_secret')

    app = tornado.web.Application([(r"/qq_redirect/", QQLoginHandler),
                                   (r"/login/", DirectLoginHandler),
                                   (r"/logout/", LogoutHandler),
                                   (r"/", IndexHandler)],
                                   cookie_secret=cookie_secret,
                                   **settings)
    return app
示例#17
0
    def post(self):
        """ POST会检查给定的用户名和密码是否正确,如果不正确会返回错误 """
        username = self.request.body_arguments.get('username')[0]
        password = self.request.body_arguments.get('password')[0]
        msg = u'用户名或密码错误'

        try:
            user = User.objects.get(username=username)
            if user.check_password(password):
                self.set_secure_cookie(config.get('uname'), username)
                self.write(json.dumps(make_success_response({'uname': username})))
            else:
                self.render('login.html', user=user)
        except:
            self.render('login.html')
示例#18
0
    def __init__(self):
        super(Cifar10, self).__init__()
        self.binarized = config.get("data", "binarized", default=False)
        self.gauss_noise = config.get("data", "gauss_noise", default=True)
        self.noise_std = config.get("data", "noise_std", default=0.01)
        self.flattened = config.get("data", "flattened", default=True)

        if self.binarized:
            assert not self.gauss_noise

        self.data_path = os.path.join("workspace", "datasets", "cifar10")

        # Get datasets
        im_transformer = transforms.Compose([transforms.ToTensor()])
        self.train_val = datasets.CIFAR10(self.data_path,
                                          train=True,
                                          transform=im_transformer,
                                          download=True)
        self.train = Subset(self.train_val, list(range(40000)))
        self.val = Subset(self.train_val, list(range(40000, 50000)))
        self.test = datasets.CIFAR10(self.data_path,
                                     train=False,
                                     transform=im_transformer,
                                     download=True)
示例#19
0
文件: auth.py 项目: seraphln/chat2all
def build_sbuss(user, request):
    """ build the entire cookie info """

    user_info = {
        'id' : user['id'],
        'username' : user['username'],
        'level' : user['level'],
    }

    rand_str = config.get('rand_str')
    user_ip = request.environ.get('REMOTE_ADDR') or request.remote_addr
    user_agent = request.get_header('User-Agent', '')
    user_info['rand'] = ''.join(random.sample(rand_str, 8))
    user_info['sign'] = build_sign(user_info['id'], str(user_info['level']),
                                   user_ip, user_agent, user_info['rand'])
    return encode_cookie(user_info)
示例#20
0
def getLogger(package_name):
    """ init logger instance """
    logger = getattr(_LOCALS, package_name, None)
    if logger is not None:
        return logger

    log_file = config.get('log_file')
    logger = logging.getLogger(package_name)
    hdlr = logging.FileHandler(log_file)
    formatter = '[%(asctime)s] Level:%(levelname)s Message:%(message)s', '%Y-%m-%d %a %H:%M:%S'
    formatter = logging.Formatter(*formatter)
    hdlr.setFormatter(formatter)
    logger.addHandler(hdlr)
    logger.setLevel(logging.DEBUG)
    setattr(_LOCALS, package_name, logger)
    return logger
示例#21
0
 def evaluate_during_training(self):
     mode = self.training
     self.eval()
     for fn, flag in config.get("evaluate_options").items():
         times = 0
         if flag is True:
             times = 20
         elif isinstance(flag, int):
             times = flag
         if times > 0:
             invl = self.n_its // times
             if self.it % invl == invl - 1:
                 eval("self.evaluator.{}".format(fn))(name="it_{}".format(
                     self.it),
                                                      it=self.it)
     self.train(mode)
示例#22
0
 def sample(self, name, **kwargs):
     fname = self._prepare("sample", name, "png")
     sample_method = config.get("others", "sample_method", default="normal")
     if sample_method == "normal":
         samples = self.model.sample(100, random=False)
         samples = self.data_factory.unpreprocess(samples)
         grid = make_grid(samples, 10)
         save_image(grid, fname)
     elif sample_method == "via_q":
         idxes = np.random.randint(0, len(self.tr), size=100)
         v = torch.stack(list(map(lambda idx: self.tr[idx], idxes)), dim=0).to(config.device)
         feature, _ = self.q.moments(v)
         samples = self.model.csample_v(feature, random=False)
         samples = self.data_factory.unpreprocess(samples)
         grid = make_grid(samples, 10)
         save_image(grid, fname)
示例#23
0
 def sample2dir(self, path, n_samples):
     sample_method = config.get("others", "sample_method", default="normal")
     idx = 0
     for batch_size in amortize(n_samples, self.runner.batch_size):
         if sample_method == "normal":
             samples = self.model.sample(batch_size, random=False)
             samples = self.data_factory.unpreprocess(samples)
         elif sample_method == "via_q":
             idxes = np.random.randint(0, len(self.tr), size=batch_size)
             v = torch.stack(list(map(lambda idx: self.tr[idx], idxes)), dim=0).to(config.device)
             feature, _ = self.q.moments(v)
             samples = self.model.csample_v(feature, random=False)
             samples = self.data_factory.unpreprocess(samples)
         else:
             raise NotImplementedError
         for sample in samples:
             save_image(sample, os.path.join(path, "%d.png" % idx))
             idx += 1
示例#24
0
文件: freyface.py 项目: baofff/BiSM
    def __init__(self):
        super(FreyFace, self).__init__()
        self.binarized = config.get("data", "binarized", default=False)
        self.gauss_noise = config.get("data", "gauss_noise", default=True)
        self.noise_std = config.get("data", "noise_std", default=0.01)
        self.preprocess = config.get("data", "preprocess", default=None)
        self.flattened = config.get("data", "flattened", default=True)

        if self.binarized:
            assert not self.gauss_noise
            assert self.preprocess is None
        assert self.preprocess == "standardize" or self.preprocess == "subtract_mean" or self.preprocess is None

        self.data_root = os.path.join("workspace", "datasets", "freyface")
        if not os.path.exists(self.data_root):
            os.makedirs(self.data_root)
        self.data_path = os.path.join(self.data_root, "frey_rawface.mat")
        if not os.path.exists(self.data_path):
            request.urlretrieve(
                "https://cs.nyu.edu/~roweis/data/frey_rawface.mat",
                self.data_path)

        data = sio.loadmat(self.data_path)['ff'].transpose().astype(
            np.float32) / 255.
        data = torch.tensor(data).view(-1, 1, 28, 20)
        train_data = data[:1400]
        val_data = data[1400:1700]
        test_data = data[1700:]

        # Get datasets
        self.train = QuickDataset(train_data)
        self.val = QuickDataset(val_data)
        self.test = QuickDataset(test_data)
        self.uniform = QuickDataset(torch.rand_like(train_data))

        # Calculate the train mean and std
        if self.preprocess == "standardize":
            standardize_mode = config.get("data",
                                          "standardize_mode",
                                          default="pixel")
            if standardize_mode == "pixel":
                self.train_mean = 0.6049
                self.train_std = 0.1763
            elif standardize_mode == "vector":
                self.train_mean = train_data.mean(dim=0)
                self.train_std = train_data.std(dim=0, unbiased=False) + 1e-3
            else:
                raise NotImplementedError
示例#25
0
文件: nce.py 项目: baofff/BiSM
def _init_optim_nce(criterion):
    optimizer = config.get("optim", "optimizer")
    scheduler = config.get("optim", "scheduler")
    lr = config.get("optim", "lr")
    weight_decay = config.get("optim", "weight_decay", default=0.)
    params = []
    for name, model in criterion.models.items():
        params += model.parameters()
    params += [criterion.c]  # nce parameter
    # init optimizers
    if optimizer == "Adam":
        betas = tuple(config.get("optim", "betas", default=(0.9, 0.95)))
        criterion.opts["all"] = optim.Adam(params,
                                           lr=lr,
                                           weight_decay=weight_decay,
                                           betas=betas)
    elif optimizer == "RMSProp":
        criterion.opts["all"] = optim.RMSprop(params,
                                              lr=lr,
                                              weight_decay=weight_decay)
    elif optimizer == "SGD":
        momentum = config.get("optim", "momentum", default=0.01)
        criterion.opts["all"] = optim.SGD(params,
                                          lr=lr,
                                          momentum=momentum,
                                          weight_decay=weight_decay)
    else:
        raise NotImplementedError
    # init schedulers
    n_its = config.get("training", "n_its")
    if scheduler == "step":
        criterion.schs["all"] = optim.lr_scheduler.StepLR(
            criterion.opts["all"], n_its // 6)
    elif scheduler == "cosine":
        criterion.schs["all"] = optim.lr_scheduler.CosineAnnealingLR(
            criterion.opts["all"], n_its, eta_min=1e-6)
    elif scheduler == "const":
        criterion.schs["all"] = optim.lr_scheduler.StepLR(
            criterion.opts["all"], n_its)
    else:
        raise NotImplementedError
示例#26
0
    def __init__(self):
        super(Mnist, self).__init__()
        self.binarized = config.get("data", "binarized", default=False)
        self.gauss_noise = config.get("data", "gauss_noise", default=True)
        self.noise_std = config.get("data", "noise_std", default=0.01)
        self.preprocess = config.get("data", "preprocess", default=None)
        self.flattened = config.get("data", "flattened", default=True)
        self.padding = config.get("data", "padding", default=False)

        if self.binarized:
            assert not self.gauss_noise
            assert self.preprocess is None
        assert self.preprocess == "standardize" or self.preprocess == "subtract_mean" or self.preprocess is None

        self.data_path = os.path.join("workspace", "datasets", "mnist")

        # Get datasets
        im_transformer = transforms.Compose([transforms.ToTensor()])
        self.train_val = datasets.MNIST(self.data_path,
                                        train=True,
                                        transform=im_transformer,
                                        download=True)
        self.train = Subset(self.train_val, list(range(50000)))
        self.val = Subset(self.train_val, list(range(50000, 60000)))
        self.test = datasets.MNIST(self.data_path,
                                   train=False,
                                   transform=im_transformer,
                                   download=True)

        # digits = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
        # self.train = my_filter(self.train, digits)
        # self.val = my_filter(self.val, digits)
        # self.test = my_filter(self.test, digits)

        self.train_mean = 0.1309
        self.train_std = 0.3085
示例#27
0
 def get(self):
     api = QQAPIClient(config.get("qq_apiid"), config.get("qq_appkey"), redirect_uri=config.get("qq_callback_url"))
     auth_url = api.get_authorization_url("authorize")
     self.render("index.html", auth_url=auth_url)
import json
from utils.config import config


file_name = config.get("data", "sample_content_file")

with open(file_name, 'r') as file:
    i = 0
    for line in file:
        patent = json.loads(line)
        print patent['id']
        i+=1
print i
示例#29
0

def make_app():
    """ make an app instance to start the server """
    settings = {'static_path': join(dirname(__file__), 'static'),
                'template_path': join(dirname(__file__), 'templates')}

    cookie_secret = config.get('cookie_secret')

    app = tornado.web.Application([(r"/qq_redirect/", QQLoginHandler),
                                   (r"/login/", DirectLoginHandler),
                                   (r"/logout/", LogoutHandler),
                                   (r"/", IndexHandler)],
                                   cookie_secret=cookie_secret,
                                   **settings)
    return app


if __name__ == "__main__":

    # 1. generate app instance
    app = make_app()

    # 2. Make Tornado app listen on port 8080
    serve_port = int(config.get('server_port'))
    app.listen(serve_port)
    print "Listening at %s" % serve_port

    # 3. Start IOLoop
    tornado.ioloop.IOLoop.current().start()
示例#30
0
 def __init__(self, models):
     super(IWAE, self).__init__(models)
     self.model = models["model"]
     self.q = models["q"]
     self.k = config.get("loss", "k")
示例#31
0
文件: bism.py 项目: baofff/BiSM
 def __init__(self, models):
     super(BiDSM, self).__init__(models)
     self.noise_std = config.get("loss", "noise_std")
示例#32
0
文件: bism.py 项目: baofff/BiSM
 def __init__(self, models):
     super(BiSSM, self).__init__(models)
     self.noise_type = config.get("loss", "noise_type", default='radermacher')
示例#33
0
def is_older(date):
    volatility_days = datetime.datetime.now() - datetime.timedelta(days=config.get('volatility'))
    return volatility_days.timestamp() >= date
示例#34
0
文件: nce.py 项目: baofff/BiSM
 def __init__(self, models):
     self.model = models["model"]
     self.nu = config.get("loss", "nu", default=1.)
     self.c = nn.Parameter(torch.scalar_tensor(0., device=config.device))
     super(NCE, self).__init__(models)
示例#35
0
 def init_criterion(self):
     self.criterion = eval(config.get("criterion", "family"))(self.models)
示例#36
0
文件: cd.py 项目: baofff/BiSM
 def __init__(self, models):
     super(CD, self).__init__(models)
     self.model = models["model"]
     self.k = config.get("loss", "k", default=1)
示例#37
0
import json
from utils.config import config

file_name = config.get("data", "sample_content_file")

with open(file_name, 'r') as file:
    i = 0
    for line in file:
        patent = json.loads(line)
        print patent['id']
        i += 1
print i
示例#38
0
文件: bism.py 项目: baofff/BiSM
 def __init__(self, models):
     super(BiSM, self).__init__(models)
     self.model = models["model"]
     self.q = models["q"]
     self.inner_loss_type = config.get("loss", "inner_loss_type")
     self.k = config.get("loss", "k", default=20)  # for iwae inner loss
示例#39
0
 def post(self):
     """ 处理退出登录相关的事宜 """
     self.clear_cookie(config.get('uname'))
     self.render('login.html', msg='')
示例#40
0
文件: sm.py 项目: baofff/BiSM
 def __init__(self, models):
     super(DSM, self).__init__(models)
     self.model = models["model"]
     self.noise_std = config.get("loss", "noise_std")