示例#1
0
    def run(self):
        # Load Dataset
        dl = DataLoader(self.config)
        X, y = dl.load_data()

        # Train Model - No Training Required, Just KF Validation
        self.train(X, y)
示例#2
0
def train(**kwargs):
    kwargs.update({'model': 'pcnnAtt'})
    opt.parse(kwargs)
    if opt.use_gpu:
        torch.cuda.set_device(opt.gpu_id)
    model = getattr(models, "pcnnAtt")(opt)
    if opt.use_gpu:
        model.cuda()

    # loading data
    DataModel = getattr(dataset, opt.data + "Data")
    train_data = DataModel(opt.data_root, train=True)
    train_data_loader = DataLoader(train_data,
                                   opt.batch_size,
                                   shuffle=True,
                                   num_workers=opt.num_workers,
                                   collate_fn=collate_fn)

    test_data = DataModel(opt.data_root, train=False)
    test_data_loader = DataLoader(test_data,
                                  opt.batch_size,
                                  shuffle=False,
                                  num_workers=opt.num_workers,
                                  collate_fn=collate_fn)
    print('{} train data: {}; test data: {}'.format(now(), len(train_data),
                                                    len(test_data)))

    optimizer = optim.Adadelta(model.parameters(), rho=0.95, eps=1e-6)
示例#3
0
文件: data.py 项目: bdevl/PGMCPC
    def _create_dataloader(self, N, identifier, extension):

        file = self.path + identifier
        file = ensure_file_extension(file, extension)

        if os.path.exists(file) and not self._forced_setup:
            dataloader = DataLoader.FromFile(file)
        else:
            print(
                "Could not find {} to load dataset (or forced); creating from sampler... "
                .format(file))
            dataloader = DataLoader.FromSampler(self._rfs, N)
            dataloader.save(file)

        return dataloader
示例#4
0
from config import Options

CMD_DATA1 = "/data/zhangyi/Noisy_dataset/CHJ14_cmd-CHJ/CHJ14_cmd-CHJ-2/CHJ14_cmd-CHJ/"
CMD_DATA2 = "/data/zhangyi/Noisy_dataset/CHJ14_cmd-CHJ/CHJ14_cmd-CHJ-3/CHJ14_cmd-CHJ/hp/"
AISHELL_DATA = "/data/tengxiang/dataset/aishell-chj-hp/"
EXTRA_DATA = "/data/tengxiang/dataset/wenzhifan/4CH/"
HISF_DATA = "/data/tengxiang/dataset/hisf/cmd_input/wav/"
LOG_HOME = "/data/tengxiang/aishell_hp/"

# tt_data_dir = os.path.join(AISHELL_DATA, "cv")
tt_data_dir = EXTRA_DATA
audio_log_dir = os.path.join(EXTRA_DATA, "../v1")
ckpt = "/home/teng.xiang/projects/model-ckpt/aishell_hp-sir_005_020/TasNet-se-19"
# ckpt = "/data/tengxiang/aishell_hp/v0/ckpt/TasNet-se-9"
# ckpt = "/home/teng.xiang/projects/model-ckpt/aishell_time-delay_cln/TasNet-se-17"

if __name__ == "__main__":
    opt = Options().parse()
    if opt.gpu_num == 1:
        os.environ['CUDA_VISIBLE_DEVICES'] = '1'
    if opt.tt_data_dir is None:
        opt.tt_data_dir = tt_data_dir
    if opt.audio_log_dir is None:
        opt.audio_log_dir = audio_log_dir

    tt_data = SeparatedDataset([opt.tt_data_dir])
    tt_loader = DataLoader(tt_data, opt.batch_size * opt.gpu_num)

    tasnet = Model(opt)
    tasnet.inference(tt_loader, ckpt)
示例#5
0
if __name__ == "__main__":

    # load configrations
    # ==========================================================================
    opt = Options().parse()
    argchk(opt)
    # ==========================================================================

    if opt.stage == "tr":
        filepatterns = ["*mixture*.wav", "*speech*.wav"]
        tr_data = SeparatedDataset(data_dir_list=[opt.tr_data_dir],
                                   file_pattern_list=filepatterns)
        cv_data = SeparatedDataset(data_dir_list=[opt.cv_data_dir],
                                   file_pattern_list=filepatterns)
        tr_loader = DataLoader(tr_data,
                               opt.batch_size * opt.gpu_num,
                               shuffle=True)
        cv_loader = DataLoader(cv_data, opt.batch_size * opt.gpu_num)

        # pre_trained_model_path = "/data/tengxiang/tasnet/log/v0/"
        # ckpt = tf.train.latest_checkpoint(pre_trained_model_path)
        tasnet = Model(opt)
        tasnet.train(tr_loader, cv_loader)

    elif opt.stage == "tt":
        tt_data = SeparatedDataset([opt.tt_data_dir])
        tt_loader = DataLoader(tt_data, opt.batch_size * opt.gpu_num)

        tasnet = Model(opt)
        tasnet.inference(tt_loader, opt.ckpt)