def main(args): ontology = json.load(open(os.path.join(args.data_root, args.ontology_data))) slot_meta, _ = make_slot_meta(ontology) tokenizer = BertTokenizer.from_pretrained("dsksd/bert-ko-small-minimal") out_file = '/opt/ml/code/p3-dst-chatting-day/SomDST/pickles/test_data_raw.pkl' if os.path.exists(out_file): print("Pickles are exist!") with open(out_file, 'rb') as f: test_data_raw = pickle.load(f) # with open(out_path+'/test_data.pkl', 'rb') as f: # test_data = pickle.load(f) print("Pickles brought!") else: print("Pickles are not exist!") test_data_raw = prepare_dataset_eval(data_path=args.test_data_path, tokenizer=tokenizer, slot_meta=slot_meta, n_history=args.n_history, max_seq_length=args.max_seq_length, op_code=args.op_code) # test_data = WosDataset(train_data_raw, # tokenizer, # slot_meta, # args.max_seq_length, # rng, # ontology, # args.word_dropout, # args.shuffle_state, # args.shuffle_p) with open(out_file, 'wb') as f: pickle.dump(test_data_raw, f) # with open(out_path+'/test_data.pkl', 'wb') as f: # pickle.dump(test_data, f) print("Pickles saved!") print("# test examples %d" % len(test_data_raw)) model_config = BertConfig.from_json_file(args.bert_config_path) model_config.dropout = 0.1 op2id = OP_SET[args.op_code] model = SomDST(model_config, len(op2id), len(domain2id), op2id['update']) ckpt = torch.load(args.model_ckpt_path, map_location='cpu') model.load_state_dict(ckpt) model.eval() model.to(device) print("Model is loaded") inference_model(model, test_data_raw, tokenizer, slot_meta, args.op_code)
def main(args): device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') ontology = json.load(open(os.path.join(args.data_root, args.ontology_data))) slot_meta, _ = make_slot_meta(ontology) tokenizer = BertTokenizer.from_pretrained(args.bert_config) special_tokens = ['[SLOT]', '[NULL]'] special_tokens_dict = {'additional_special_tokens': special_tokens} tokenizer.add_special_tokens(special_tokens_dict) data = prepare_dataset(data_path=os.path.join(args.data_root, args.test_data), data_list=None, tokenizer=tokenizer, slot_meta=slot_meta, n_history=args.n_history, max_seq_length=args.max_seq_length, op_code=args.op_code) model_config = BertConfig.from_json_file(args.bert_config_path) model_config.dropout = 0.1 op2id = OP_SET[args.op_code] model = TransformerDST(model_config, len(op2id), len(domain2id), op2id['update']) ckpt = torch.load(args.model_ckpt_path, map_location='cpu') model.load_state_dict(ckpt) model.eval() model.to(device) if args.eval_all: model_evaluation(model, data, tokenizer, slot_meta, 0, args.op_code, False, False, False) model_evaluation(model, data, tokenizer, slot_meta, 0, args.op_code, False, False, True) model_evaluation(model, data, tokenizer, slot_meta, 0, args.op_code, False, True, False) model_evaluation(model, data, tokenizer, slot_meta, 0, args.op_code, False, True, True) model_evaluation(model, data, tokenizer, slot_meta, 0, args.op_code, True, False, False) model_evaluation(model, data, tokenizer, slot_meta, 0, args.op_code, True, True, False) model_evaluation(model, data, tokenizer, slot_meta, 0, args.op_code, True, False, True) model_evaluation(model, data, tokenizer, slot_meta, 0, args.op_code, True, True, True) else: model_evaluation(model, data, tokenizer, slot_meta, 0, args.op_code, args.gt_op, args.gt_p_state, args.gt_gen)
def main(args): device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') ontology = json.load(open(os.path.join(args.data_root, args.ontology_data))) slot_meta, _ = make_slot_meta(ontology) tokenizer = BertTokenizer(args.vocab_path, do_lower_case=True) data = prepare_dataset(os.path.join(args.data_root, args.test_data), tokenizer, slot_meta, args.n_history, args.max_seq_length, args.op_code) model_config = BertConfig.from_json_file(args.bert_config_path) model_config.dropout = 0.1 op2id = OP_SET[args.op_code] model = TransformerDST(model_config, len(op2id), len(domain2id), op2id['update']) ckpt = torch.load(args.model_ckpt_path, map_location='cpu') model.load_state_dict(ckpt) model.eval() model.to(device) if args.eval_all: model_evaluation(model, data, tokenizer, slot_meta, 0, args.op_code, False, False, False) model_evaluation(model, data, tokenizer, slot_meta, 0, args.op_code, False, False, True) model_evaluation(model, data, tokenizer, slot_meta, 0, args.op_code, False, True, False) model_evaluation(model, data, tokenizer, slot_meta, 0, args.op_code, False, True, True) model_evaluation(model, data, tokenizer, slot_meta, 0, args.op_code, True, False, False) model_evaluation(model, data, tokenizer, slot_meta, 0, args.op_code, True, True, False) model_evaluation(model, data, tokenizer, slot_meta, 0, args.op_code, True, False, True) model_evaluation(model, data, tokenizer, slot_meta, 0, args.op_code, True, True, True) else: model_evaluation(model, data, tokenizer, slot_meta, 0, args.op_code, args.gt_op, args.gt_p_state, args.gt_gen)
def main(args): ontology = json.load(open(os.path.join(args.data_root, args.ontology_data))) slot_meta, _ = make_slot_meta(ontology) tokenizer = BertTokenizer.from_pretrained("dsksd/bert-ko-small-minimal") data = prepare_dataset(os.path.join(args.data_root, args.test_data), tokenizer, slot_meta, args.n_history, args.max_seq_length, args.op_code) model_config = BertConfig.from_json_file(args.bert_config_path) model_config.dropout = 0.1 op2id = OP_SET[args.op_code] model = SomDST(model_config, len(op2id), len(domain2id), op2id['update']) ckpt = torch.load(args.model_ckpt_path, map_location='cpu') model.load_state_dict(ckpt) model.eval() model.to(device) if args.eval_all: model_evaluation(model, data, tokenizer, slot_meta, 0, args.op_code, False, False, False) model_evaluation(model, data, tokenizer, slot_meta, 0, args.op_code, False, False, True) model_evaluation(model, data, tokenizer, slot_meta, 0, args.op_code, False, True, False) model_evaluation(model, data, tokenizer, slot_meta, 0, args.op_code, False, True, True) model_evaluation(model, data, tokenizer, slot_meta, 0, args.op_code, True, False, False) model_evaluation(model, data, tokenizer, slot_meta, 0, args.op_code, True, True, False) model_evaluation(model, data, tokenizer, slot_meta, 0, args.op_code, True, False, True) model_evaluation(model, data, tokenizer, slot_meta, 0, args.op_code, True, True, True) else: model_evaluation(model, data, tokenizer, slot_meta, 0, args.op_code, args.gt_op, args.gt_p_state, args.gt_gen)
def main(args): assert args.use_one_optim is True if args.use_cls_only: args.no_dial = True print("### use_cls_only: {:}".format(args.use_cls_only)) print("### no_dial: {:}".format(args.no_dial)) if args.recover_e > 0: raise NotImplementedError("This option is from my oldest code version. " "I have not checked it for this code version.") if not os.path.exists(args.save_dir): os.mkdir(args.save_dir) print("### mkdir {:}".format(args.save_dir)) def worker_init_fn(worker_id): np.random.seed(args.random_seed + worker_id) n_gpu = 0 if torch.cuda.is_available() and (not args.use_cpu): n_gpu = torch.cuda.device_count() device = torch.device('cuda') print("### Device: {:}".format(device)) else: print("### Use CPU (Debugging)") device = torch.device("cpu") if args.random_seed < 0: print("### Pick a random seed") args.random_seed = random.sample(list(range(0, 100000)), 1)[0] print("### Random Seed: {:}".format(args.random_seed)) np.random.seed(args.random_seed) random.seed(args.random_seed) rng = random.Random(args.random_seed) torch.manual_seed(args.random_seed) if n_gpu > 0: if args.random_seed >= 0: torch.cuda.manual_seed(args.random_seed) torch.cuda.manual_seed_all(args.random_seed) torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True if not os.path.exists(args.save_dir): os.mkdir(args.save_dir) ontology = json.load(open(args.ontology_data)) slot_meta, ontology = make_slot_meta(ontology) op2id = OP_SET[args.op_code] print(op2id) tokenizer = BertTokenizer(args.vocab_path, do_lower_case=True) train_path = os.path.join(args.data_root, "train.pt") dev_path = os.path.join(args.data_root, "dev.pt") test_path = os.path.join(args.data_root, "test.pt") if not os.path.exists(test_path): test_data_raw = prepare_dataset(data_path=args.test_data_path, tokenizer=tokenizer, slot_meta=slot_meta, n_history=args.n_history, max_seq_length=args.max_seq_length, op_code=args.op_code) torch.save(test_data_raw, test_path) else: test_data_raw = torch.load(test_path) print("# test examples %d" % len(test_data_raw)) if not os.path.exists(train_path): train_data_raw = prepare_dataset(data_path=args.train_data_path, tokenizer=tokenizer, slot_meta=slot_meta, n_history=args.n_history, max_seq_length=args.max_seq_length, op_code=args.op_code) torch.save(train_data_raw, train_path) else: train_data_raw = torch.load(train_path) train_data = MultiWozDataset(train_data_raw, tokenizer, slot_meta, args.max_seq_length, rng, ontology, args.word_dropout, args.shuffle_state, args.shuffle_p, pad_id=tokenizer.convert_tokens_to_ids(['[PAD]'])[0], slot_id=tokenizer.convert_tokens_to_ids(['[SLOT]'])[0], decoder_teacher_forcing=args.decoder_teacher_forcing, use_full_slot=args.use_full_slot, use_dt_only=args.use_dt_only, no_dial=args.no_dial, use_cls_only=args.use_cls_only) print("# train examples %d" % len(train_data_raw)) if not os.path.exists(dev_path): dev_data_raw = prepare_dataset(data_path=args.dev_data_path, tokenizer=tokenizer, slot_meta=slot_meta, n_history=args.n_history, max_seq_length=args.max_seq_length, op_code=args.op_code) torch.save(dev_data_raw, dev_path) else: dev_data_raw = torch.load(dev_path) print("# dev examples %d" % len(dev_data_raw)) model_config = BertConfig.from_json_file(args.bert_config_path) model_config.dropout = args.dropout model_config.attention_probs_dropout_prob = args.attention_probs_dropout_prob model_config.hidden_dropout_prob = args.hidden_dropout_prob type_vocab_size = 4 dec_config = args model = TransformerDST(model_config, dec_config, len(op2id), len(domain2id), op2id['update'], tokenizer.convert_tokens_to_ids(['[MASK]'])[0], tokenizer.convert_tokens_to_ids(['[SEP]'])[0], tokenizer.convert_tokens_to_ids(['[PAD]'])[0], tokenizer.convert_tokens_to_ids(['-'])[0], type_vocab_size, args.exclude_domain) if not os.path.exists(args.bert_ckpt_path): args.bert_ckpt_path = download_ckpt(args.bert_ckpt_path, args.bert_config_path, 'assets') state_dict = torch.load(args.bert_ckpt_path, map_location='cpu') _k = 'embeddings.token_type_embeddings.weight' print("config.type_vocab_size != state_dict[bert.embeddings.token_type_embeddings.weight] ({0} != {1})".format( type_vocab_size, state_dict[_k].shape[0])) state_dict[_k].resize_( type_vocab_size, state_dict[_k].shape[1]) state_dict[_k].data[2, :].copy_(state_dict[_k].data[0, :]) state_dict[_k].data[3, :].copy_(state_dict[_k].data[0, :]) model.bert.load_state_dict(state_dict) print("\n### Done Load BERT") sys.stdout.flush() # re-initialize added special tokens ([SLOT], [NULL], [EOS]) model.bert.embeddings.word_embeddings.weight.data[1].normal_(mean=0.0, std=0.02) model.bert.embeddings.word_embeddings.weight.data[2].normal_(mean=0.0, std=0.02) model.bert.embeddings.word_embeddings.weight.data[3].normal_(mean=0.0, std=0.02) # re-initialize seg-2, seg-3 model.bert.embeddings.token_type_embeddings.weight.data[2].normal_(mean=0.0, std=0.02) model.bert.embeddings.token_type_embeddings.weight.data[3].normal_(mean=0.0, std=0.02) model.to(device) num_train_steps = int(len(train_data_raw) / args.batch_size * args.n_epochs) if args.use_one_optim: print("### Use One Optim") param_optimizer = list(model.named_parameters()) no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] optimizer_grouped_parameters = [ {'params': [p for n, p in param_optimizer if not any( nd in n for nd in no_decay)], 'weight_decay': 0.01}, {'params': [p for n, p in param_optimizer if any( nd in n for nd in no_decay)], 'weight_decay': 0.0} ] optimizer = AdamW(optimizer_grouped_parameters, lr=args.enc_lr) scheduler = WarmupLinearSchedule(optimizer, int(num_train_steps * args.enc_warmup), t_total=num_train_steps) else: no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] enc_param_optimizer = list(model.bert.named_parameters()) # TODO: For BERT only print('### Optim BERT: {:}'.format(len(enc_param_optimizer))) enc_optimizer_grouped_parameters = [ {'params': [p for n, p in enc_param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01}, {'params': [p for n, p in enc_param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} ] enc_optimizer = AdamW(enc_optimizer_grouped_parameters, lr=args.enc_lr) enc_scheduler = WarmupLinearSchedule(enc_optimizer, int(num_train_steps * args.enc_warmup), t_total=num_train_steps) dec_param_optimizer = list(model.named_parameters()) # TODO: For other parameters print('### Optim All: {:}'.format(len(dec_param_optimizer))) dec_param_optimizer = [p for (n, p) in dec_param_optimizer if 'bert' not in n] print('### Optim OTH: {:}'.format(len(dec_param_optimizer))) dec_optimizer = AdamW(dec_param_optimizer, lr=args.dec_lr) dec_scheduler = WarmupLinearSchedule(dec_optimizer, int(num_train_steps * args.dec_warmup), t_total=num_train_steps) if args.recover_e > 0: model_recover, enc_recover, dec_recover = load(args, str(args.recover_e)) print("### Recover Model E{:}".format(args.recover_e)) sys.stdout.flush() model.load_state_dict(model_recover) print("### Recover Optim E{:}".format(args.recover_e)) sys.stdout.flush() enc_optimizer.load_state_dict(enc_recover) dec_optimizer.load_state_dict(dec_optimizer) if n_gpu > 1: model = torch.nn.DataParallel(model) train_sampler = RandomSampler(train_data) train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.batch_size, collate_fn=train_data.collate_fn, num_workers=args.num_workers, worker_init_fn=worker_init_fn) loss_fnc = nn.CrossEntropyLoss() best_score = {'epoch': 0, 'joint_acc': 0, 'op_acc': 0, 'final_slot_f1': 0} start_time = time.time() for epoch in range(args.n_epochs): batch_loss = [] model.train() for step, batch in enumerate(train_dataloader): batch = [b.to(device) if (not isinstance(b, int)) and (not isinstance(b, dict) and (not isinstance(b, list)) and (not isinstance(b, np.ndarray))) else b for b in batch] input_ids_p, segment_ids_p, input_mask_p, \ state_position_ids, op_ids, domain_ids, input_ids_g, segment_ids_g, position_ids_g, input_mask_g, \ masked_pos, masked_weights, lm_label_ids, id_n_map, gen_max_len, n_total_pred = batch domain_scores, state_scores, loss_g = model(input_ids_p, segment_ids_p, input_mask_p, state_position_ids, input_ids_g, segment_ids_g, position_ids_g, input_mask_g, masked_pos, masked_weights, lm_label_ids, id_n_map, gen_max_len, only_pred_op=args.only_pred_op, n_gpu=n_gpu) if n_total_pred > 0: loss_g = loss_g.sum() / n_total_pred else: loss_g = 0 loss_s = loss_fnc(state_scores.view(-1, len(op2id)), op_ids.view(-1)) if args.only_pred_op: loss = loss_s else: loss = loss_s + loss_g if args.exclude_domain is not True: loss_d = loss_fnc(domain_scores.view(-1, len(domain2id)), domain_ids.view(-1)) loss = loss + loss_d batch_loss.append(loss.item()) loss.backward() if args.use_one_optim: optimizer.step() scheduler.step() else: enc_optimizer.step() enc_scheduler.step() dec_optimizer.step() dec_scheduler.step() model.zero_grad() if step % 100 == 0: try: loss_g = loss_g.item() except AttributeError: loss_g = loss_g if args.exclude_domain is not True: print("time %.1f min, [%d/%d] [%d/%d] mean_loss : %.3f, state_loss : %.3f, gen_loss : %.3f, dom_loss : %.3f" \ % ((time.time()-start_time)/60, epoch+1, args.n_epochs, step, len(train_dataloader), np.mean(batch_loss), loss_s.item(), loss_g, loss_d.item())) else: print("time %.1f min, [%d/%d] [%d/%d] mean_loss : %.3f, state_loss : %.3f, gen_loss : %.3f" \ % ((time.time()-start_time)/60, epoch+1, args.n_epochs, step, len(train_dataloader), np.mean(batch_loss), loss_s.item(), loss_g)) sys.stdout.flush() batch_loss = [] if args.use_one_optim: save(args, epoch + 1, model, optimizer) else: save(args, epoch + 1, model, enc_optimizer, dec_optimizer) if ((epoch+1) % args.eval_epoch == 0) and (epoch+1 >= 8): eval_res = model_evaluation(model, dev_data_raw, tokenizer, slot_meta, epoch+1, args.op_code, use_full_slot=args.use_full_slot, use_dt_only=args.use_dt_only, no_dial=args.no_dial, use_cls_only=args.use_cls_only, n_gpu=n_gpu) print("### Epoch {:} Score : ".format(epoch+1), eval_res) if eval_res['joint_acc'] > best_score['joint_acc']: best_score = eval_res print("### Best Joint Acc: {:} ###".format(best_score['joint_acc'])) print('\n') if epoch+1 >= 8: # To speed up eval_res_test = model_evaluation(model, test_data_raw, tokenizer, slot_meta, epoch + 1, args.op_code, use_full_slot=args.use_full_slot, use_dt_only=args.use_dt_only, no_dial=args.no_dial, use_cls_only=args.use_cls_only, n_gpu=n_gpu) print("### Epoch {:} Test Score : ".format(epoch + 1), eval_res_test)
def main(args): def worker_init_fn(worker_id): np.random.seed(args.random_seed + worker_id) n_gpu = 0 if torch.cuda.is_available(): n_gpu = torch.cuda.device_count() np.random.seed(args.random_seed) random.seed(args.random_seed) rng = random.Random(args.random_seed) torch.manual_seed(args.random_seed) if n_gpu > 0: torch.cuda.manual_seed(args.random_seed) torch.cuda.manual_seed_all(args.random_seed) torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True if not os.path.exists(args.save_dir): os.mkdir(args.save_dir) ontology = json.load(open(args.ontology_data)) slot_meta, ontology = make_slot_meta(ontology) op2id = OP_SET[args.op_code] print(op2id) tokenizer = BertTokenizer(args.vocab_path, do_lower_case=True) train_data_raw = prepare_dataset(data_path=args.train_data_path, tokenizer=tokenizer, slot_meta=slot_meta, n_history=args.n_history, max_seq_length=args.max_seq_length, op_code=args.op_code) train_data = MultiWozDataset(train_data_raw, tokenizer, slot_meta, args.max_seq_length, rng, ontology, args.word_dropout, args.shuffle_state, args.shuffle_p) print("# train examples %d" % len(train_data_raw)) dev_data_raw = prepare_dataset(data_path=args.dev_data_path, tokenizer=tokenizer, slot_meta=slot_meta, n_history=args.n_history, max_seq_length=args.max_seq_length, op_code=args.op_code) print("# dev examples %d" % len(dev_data_raw)) test_data_raw = prepare_dataset(data_path=args.test_data_path, tokenizer=tokenizer, slot_meta=slot_meta, n_history=args.n_history, max_seq_length=args.max_seq_length, op_code=args.op_code) print("# test examples %d" % len(test_data_raw)) model_config = BertConfig.from_json_file(args.bert_config_path) model_config.dropout = args.dropout model_config.attention_probs_dropout_prob = args.attention_probs_dropout_prob model_config.hidden_dropout_prob = args.hidden_dropout_prob model = SomDST(model_config, len(op2id), len(domain2id), op2id['update'], args.exclude_domain) if not os.path.exists(args.bert_ckpt_path): args.bert_ckpt_path = download_ckpt(args.bert_ckpt_path, args.bert_config_path, 'assets') ckpt = torch.load(args.bert_ckpt_path, map_location='cpu') model.encoder.bert.load_state_dict(ckpt) # re-initialize added special tokens ([SLOT], [NULL], [EOS]) model.encoder.bert.embeddings.word_embeddings.weight.data[1].normal_(mean=0.0, std=0.02) model.encoder.bert.embeddings.word_embeddings.weight.data[2].normal_(mean=0.0, std=0.02) model.encoder.bert.embeddings.word_embeddings.weight.data[3].normal_(mean=0.0, std=0.02) model.to(device) num_train_steps = int(len(train_data_raw) / args.batch_size * args.n_epochs) no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] enc_param_optimizer = list(model.encoder.named_parameters()) enc_optimizer_grouped_parameters = [ {'params': [p for n, p in enc_param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01}, {'params': [p for n, p in enc_param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} ] enc_optimizer = AdamW(enc_optimizer_grouped_parameters, lr=args.enc_lr) enc_scheduler = WarmupLinearSchedule(enc_optimizer, int(num_train_steps * args.enc_warmup), t_total=num_train_steps) dec_param_optimizer = list(model.decoder.parameters()) dec_optimizer = AdamW(dec_param_optimizer, lr=args.dec_lr) dec_scheduler = WarmupLinearSchedule(dec_optimizer, int(num_train_steps * args.dec_warmup), t_total=num_train_steps) if n_gpu > 1: model = torch.nn.DataParallel(model) train_sampler = RandomSampler(train_data) train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.batch_size, collate_fn=train_data.collate_fn, num_workers=args.num_workers, worker_init_fn=worker_init_fn) loss_fnc = nn.CrossEntropyLoss() best_score = {'epoch': 0, 'joint_acc': 0, 'op_acc': 0, 'final_slot_f1': 0} for epoch in range(args.n_epochs): batch_loss = [] model.train() for step, batch in enumerate(train_dataloader): batch = [b.to(device) if not isinstance(b, int) else b for b in batch] input_ids, input_mask, segment_ids, state_position_ids, op_ids,\ domain_ids, gen_ids, max_value, max_update = batch if rng.random() < args.decoder_teacher_forcing: # teacher forcing teacher = gen_ids else: teacher = None domain_scores, state_scores, gen_scores = model(input_ids=input_ids, token_type_ids=segment_ids, state_positions=state_position_ids, attention_mask=input_mask, max_value=max_value, op_ids=op_ids, max_update=max_update, teacher=teacher) loss_s = loss_fnc(state_scores.view(-1, len(op2id)), op_ids.view(-1)) loss_g = masked_cross_entropy_for_value(gen_scores.contiguous(), gen_ids.contiguous(), tokenizer.vocab['[PAD]']) loss = loss_s + loss_g if args.exclude_domain is not True: loss_d = loss_fnc(domain_scores.view(-1, len(domain2id)), domain_ids.view(-1)) loss = loss + loss_d batch_loss.append(loss.item()) loss.backward() enc_optimizer.step() enc_scheduler.step() dec_optimizer.step() dec_scheduler.step() model.zero_grad() if step % 100 == 0: if args.exclude_domain is not True: print("[%d/%d] [%d/%d] mean_loss : %.3f, state_loss : %.3f, gen_loss : %.3f, dom_loss : %.3f" \ % (epoch+1, args.n_epochs, step, len(train_dataloader), np.mean(batch_loss), loss_s.item(), loss_g.item(), loss_d.item())) else: print("[%d/%d] [%d/%d] mean_loss : %.3f, state_loss : %.3f, gen_loss : %.3f" \ % (epoch+1, args.n_epochs, step, len(train_dataloader), np.mean(batch_loss), loss_s.item(), loss_g.item())) batch_loss = [] if (epoch+1) % args.eval_epoch == 0: eval_res = model_evaluation(model, dev_data_raw, tokenizer, slot_meta, epoch+1, args.op_code) if eval_res['joint_acc'] > best_score['joint_acc']: best_score = eval_res model_to_save = model.module if hasattr(model, 'module') else model save_path = os.path.join(args.save_dir, 'model_best.bin') torch.save(model_to_save.state_dict(), save_path) print("Best Score : ", best_score) print("\n") print("Test using best model...") best_epoch = best_score['epoch'] ckpt_path = os.path.join(args.save_dir, 'model_best.bin') model = SomDST(model_config, len(op2id), len(domain2id), op2id['update'], args.exclude_domain) ckpt = torch.load(ckpt_path, map_location='cpu') model.load_state_dict(ckpt) model.to(device) model_evaluation(model, test_data_raw, tokenizer, slot_meta, best_epoch, args.op_code, is_gt_op=False, is_gt_p_state=False, is_gt_gen=False) model_evaluation(model, test_data_raw, tokenizer, slot_meta, best_epoch, args.op_code, is_gt_op=False, is_gt_p_state=False, is_gt_gen=True) model_evaluation(model, test_data_raw, tokenizer, slot_meta, best_epoch, args.op_code, is_gt_op=False, is_gt_p_state=True, is_gt_gen=False) model_evaluation(model, test_data_raw, tokenizer, slot_meta, best_epoch, args.op_code, is_gt_op=False, is_gt_p_state=True, is_gt_gen=True) model_evaluation(model, test_data_raw, tokenizer, slot_meta, best_epoch, args.op_code, is_gt_op=True, is_gt_p_state=False, is_gt_gen=False) model_evaluation(model, test_data_raw, tokenizer, slot_meta, best_epoch, args.op_code, is_gt_op=True, is_gt_p_state=True, is_gt_gen=False) model_evaluation(model, test_data_raw, tokenizer, slot_meta, best_epoch, args.op_code, is_gt_op=True, is_gt_p_state=False, is_gt_gen=True) model_evaluation(model, test_data_raw, tokenizer, slot_meta, best_epoch, args.op_code, is_gt_op=True, is_gt_p_state=True, is_gt_gen=True)
def main(args): assert args.use_one_optim is True if args.recover_e > 0: raise NotImplementedError("This option is from my oldest code version. " "I have not checked it for this code version.") if not os.path.exists(args.save_dir): os.mkdir(args.save_dir) print("### mkdir {:}".format(args.save_dir)) def worker_init_fn(worker_id): np.random.seed(args.random_seed + worker_id) n_gpu = 0 if torch.cuda.is_available() and (not args.use_cpu): n_gpu = torch.cuda.device_count() device = torch.device('cuda') print("### Device: {:}".format(device)) else: print("### Use CPU (Debugging)") device = torch.device("cpu") if args.random_seed < 0: print("### Pick a random seed") args.random_seed = random.sample(list(range(1, 100000)), 1)[0] print("### Random Seed: {:}".format(args.random_seed)) np.random.seed(args.random_seed) random.seed(args.random_seed) rng = random.Random(args.random_seed) torch.manual_seed(args.random_seed) if n_gpu > 0: if args.random_seed >= 0: torch.cuda.manual_seed(args.random_seed) torch.cuda.manual_seed_all(args.random_seed) torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True if not os.path.exists(args.save_dir): os.mkdir(args.save_dir) ontology = json.load(open(args.ontology_data)) slot_meta, ontology = make_slot_meta(ontology) op2id = OP_SET[args.op_code] print(op2id) tokenizer = BertTokenizer(args.vocab_path, do_lower_case=True) train_path = os.path.join(args.data_root, "train.pt") train_data_raw = torch.load(train_path)[:5000] print("# train examples %d" % len(train_data_raw)) test_path = os.path.join(args.data_root, "test.pt") test_data_raw = torch.load(test_path) print("# test examples %d" % len(test_data_raw)) model_config = BertConfig.from_json_file(args.bert_config_path) model_config.dropout = args.dropout model_config.attention_probs_dropout_prob = args.attention_probs_dropout_prob model_config.hidden_dropout_prob = args.hidden_dropout_prob type_vocab_size = 4 dec_config = args model = TransformerDST(model_config, dec_config, len(op2id), len(domain2id), op2id['update'], tokenizer.convert_tokens_to_ids(['[MASK]'])[0], tokenizer.convert_tokens_to_ids(['[SEP]'])[0], tokenizer.convert_tokens_to_ids(['[PAD]'])[0], tokenizer.convert_tokens_to_ids(['-'])[0], type_vocab_size, args.exclude_domain) test_epochs = [int(e) for e in args.load_epoch.strip().lower().split('-')] for best_epoch in test_epochs: print("### Epoch {:}...".format(best_epoch)) sys.stdout.flush() ckpt_path = os.path.join(args.save_dir, 'model.e{:}.bin'.format(best_epoch)) ckpt = torch.load(ckpt_path, map_location='cpu') model.load_state_dict(ckpt) model.to(device) # eval_res = model_evaluation(model, train_data_raw, tokenizer, slot_meta, best_epoch, args.op_code, # use_full_slot=args.use_full_slot, use_dt_only=args.use_dt_only, no_dial=args.no_dial, n_gpu=n_gpu, # is_gt_op=False, is_gt_p_state=False, is_gt_gen=False) # # print("### Epoch {:} Train Score : ".format(best_epoch), eval_res) # print('\n'*2) # sys.stdout.flush() eval_res = model_evaluation(model, test_data_raw, tokenizer, slot_meta, best_epoch, args.op_code, use_full_slot=args.use_full_slot, use_dt_only=args.use_dt_only, no_dial=args.no_dial, n_gpu=n_gpu, is_gt_op=False, is_gt_p_state=False, is_gt_gen=False) print("### Epoch {:} Test Score : ".format(best_epoch), eval_res) print('\n'*2) sys.stdout.flush()
def main(args): def worker_init_fn(worker_id): np.random.seed(args.random_seed + worker_id) n_gpu = 0 if torch.cuda.is_available(): n_gpu = torch.cuda.device_count() np.random.seed(args.random_seed) random.seed(args.random_seed) rng = random.Random(args.random_seed) torch.manual_seed(args.random_seed) if n_gpu > 0: torch.cuda.manual_seed(args.random_seed) torch.cuda.manual_seed_all(args.random_seed) torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True if not os.path.exists(args.out_dir): os.mkdir(args.out_dir) ontology = json.load(open(args.ontology_data)) slot_meta, ontology = make_slot_meta(ontology) op2id = OP_SET[args.op_code] tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') if os.path.exists(args.train_data_path + ".pk"): train_data_raw = load_data(args.train_data_path + ".pk") else: train_data_raw = prepare_dataset(data_path=args.train_data_path, tokenizer=tokenizer, slot_meta=slot_meta, n_history=args.n_history, max_seq_length=args.max_seq_length, op_code=args.op_code) print("# train examples %d" % len(train_data_raw)) # maxlen = 0 # for i in range(len(train_data_raw)): # maxlen = max(maxlen, len(train_data_raw[i].turn_utter.split())) # print(maxlen) if os.path.exists(args.dev_data_path + ".pk"): dev_data_raw = load_data(args.dev_data_path + ".pk") else: dev_data_raw = prepare_dataset(data_path=args.dev_data_path, tokenizer=tokenizer, slot_meta=slot_meta, n_history=args.n_history, max_seq_length=args.max_seq_length, op_code=args.op_code) print("# dev examples %d" % len(dev_data_raw)) if os.path.exists(args.test_data_path + ".pk"): test_data_raw = load_data(args.test_data_path + ".pk") else: test_data_raw = prepare_dataset(data_path=args.test_data_path, tokenizer=tokenizer, slot_meta=slot_meta, n_history=args.n_history, max_seq_length=args.max_seq_length, op_code=args.op_code) print("# test examples %d" % len(test_data_raw)) dst = DST(args, ontology, slot_meta) best_score = {'epoch': float("-inf"), 'joint_acc_score': float("-inf"), 'op_acc': float("-inf"), 'final_slot_f1': float("-inf")} dst.model.train_model(train_data_raw, test_data_raw, ontology, slot_meta, args.out_dir, args.filename, show_running_loss=True)
def main(args): if not os.path.exists(args.save_dir): os.mkdir(args.save_dir) print("### mkdir {:}".format(args.save_dir)) def worker_init_fn(worker_id): np.random.seed(args.random_seed + worker_id) n_gpu = 0 if torch.cuda.is_available() and args.use_cpu: n_gpu = torch.cuda.device_count() device = torch.device('cuda') print("### Device: {:}".format(device)) else: print("### Use CPU (Debugging)") device = torch.device("cpu") if args.random_seed < 0: print("### Pick a random seed") args.random_seed = random.sample(list(range(1, 100000)), 1)[0] print("### Random Seed: {:}".format(args.random_seed)) np.random.seed(args.random_seed) random.seed(args.random_seed) rng = random.Random(args.random_seed) torch.manual_seed(args.random_seed) if n_gpu > 0: if args.random_seed >= 0: torch.cuda.manual_seed(args.random_seed) torch.cuda.manual_seed_all(args.random_seed) torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True if not os.path.exists(args.save_dir): os.mkdir(args.save_dir) ontology = json.load(open(args.ontology_data)) slot_meta, ontology = make_slot_meta(ontology) op2id = OP_SET[args.op_code] print(op2id) tokenizer = BertTokenizer.from_pretrained(args.bert_config) special_tokens = ['[SLOT]', '[NULL]'] special_tokens_dict = {'additional_special_tokens': special_tokens} tokenizer.add_special_tokens(special_tokens_dict) test_path = os.path.join(args.data_root_test, "test.pt") if not os.path.exists(test_path): test_data_raw = prepare_dataset_for_inference(data_path=args.test_data_path, data_list=None, tokenizer=tokenizer, slot_meta=slot_meta, n_history=args.n_history, max_seq_length=args.max_seq_length, op_code=args.op_code) torch.save(test_data_raw, test_path) else: test_data_raw = torch.load(test_path) print("# test examples %d" % len(test_data_raw)) model_config = BertConfig.from_json_file(args.bert_config_path) model_config.dropout = 0. model_config.attention_probs_dropout_prob = 0. model_config.hidden_dropout_prob = 0. type_vocab_size = 4 dec_config = args model = TransformerDST(model_config, dec_config, len(op2id), len(domain2id), op2id['update'], tokenizer.convert_tokens_to_ids(['[MASK]'])[0], tokenizer.convert_tokens_to_ids(['[SEP]'])[0], tokenizer.convert_tokens_to_ids(['[PAD]'])[0], tokenizer.convert_tokens_to_ids(['-'])[0], type_vocab_size, args.exclude_domain) state_dict = torch.load(args.bert_ckpt_path, map_location='cpu') _k = 'bert.embeddings.token_type_embeddings.weight' print("config.type_vocab_size != state_dict[bert.embeddings.token_type_embeddings.weight] ({0} != {1})".format( type_vocab_size, state_dict[_k].shape[0])) state_dict[_k] = state_dict[_k].repeat(int(type_vocab_size / state_dict[_k].shape[0]), 1) state_dict[_k].data[2, :].copy_(state_dict[_k].data[0, :]) state_dict[_k].data[3, :].copy_(state_dict[_k].data[0, :]) model.bert.load_state_dict(state_dict, strict=False) # re-initialize added special tokens ([SLOT], [NULL], [EOS]) model.bert.embeddings.word_embeddings.weight.data[1].normal_(mean=0.0, std=0.02) model.bert.embeddings.word_embeddings.weight.data[2].normal_(mean=0.0, std=0.02) model.bert.embeddings.word_embeddings.weight.data[3].normal_(mean=0.0, std=0.02) # re-initialize seg-2, seg-3 model.bert.embeddings.token_type_embeddings.weight.data[2].normal_(mean=0.0, std=0.02) model.bert.embeddings.token_type_embeddings.weight.data[3].normal_(mean=0.0, std=0.02) model.bert.resize_token_embeddings(len(tokenizer)) test_epochs = [int(e) for e in args.load_epoch.strip().lower().split('-')] for best_epoch in test_epochs: print("### Epoch {:}...".format(best_epoch)) sys.stdout.flush() ckpt_path = os.path.join('/opt/ml/code/transformer_dst', args.save_dir, 'model.e{:}.bin'.format(best_epoch)) ckpt = torch.load(ckpt_path, map_location='cpu') model.load_state_dict(ckpt) model.to(device) eval_res = model_evaluation(model, test_data_raw, tokenizer, slot_meta, best_epoch, args.op_code, use_full_slot=args.use_full_slot, use_dt_only=args.use_dt_only, no_dial=args.no_dial, n_gpu=n_gpu, is_gt_op=False, is_gt_p_state=False, is_gt_gen=False, submission=True) print("### Epoch {:} Test Score : ".format(best_epoch), eval_res) print('\n' * 2) sys.stdout.flush()
def main(args): def worker_init_fn(worker_id): np.random.seed(args.random_seed + worker_id) n_gpu = 0 if torch.cuda.is_available(): n_gpu = torch.cuda.device_count() np.random.seed(args.random_seed) random.seed(args.random_seed) rng = random.Random(args.random_seed) torch.manual_seed(args.random_seed) if n_gpu > 0: torch.cuda.manual_seed(args.random_seed) torch.cuda.manual_seed_all(args.random_seed) torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True if not os.path.exists(args.out_dir): os.mkdir(args.out_dir) ontology = json.load(open(args.ontology_data)) slot_meta, ontology = make_slot_meta(ontology) op2id = OP_SET[args.op_code] tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') if os.path.exists(args.train_data_path + ".pk"): train_data_raw = load_data(args.train_data_path + ".pk") else: train_data_raw = prepare_dataset(data_path=args.train_data_path, tokenizer=tokenizer, slot_meta=slot_meta, n_history=args.n_history, max_seq_length=args.max_seq_length, op_code=args.op_code) print("# train examples %d" % len(train_data_raw)) if os.path.exists(args.dev_data_path + ".pk"): dev_data_raw = load_data(args.dev_data_path + ".pk") else: dev_data_raw = prepare_dataset(data_path=args.dev_data_path, tokenizer=tokenizer, slot_meta=slot_meta, n_history=args.n_history, max_seq_length=args.max_seq_length, op_code=args.op_code) print("# dev examples %d" % len(dev_data_raw)) if os.path.exists(args.test_data_path + ".pk"): test_data_raw = load_data(args.test_data_path + ".pk") else: test_data_raw = prepare_dataset(data_path=args.test_data_path, tokenizer=tokenizer, slot_meta=slot_meta, n_history=args.n_history, max_seq_length=args.max_seq_length, op_code=args.op_code) print("# test examples %d" % len(test_data_raw)) model = DST_PICK.from_pretrained('bert-base-uncased') if not os.path.exists(args.bert_ckpt_path): args.bert_ckpt_path = download_ckpt(args.bert_ckpt_path, args.bert_config_path, 'assets') ckpt = torch.load(args.bert_ckpt_path, map_location='cpu') model.bert.load_state_dict(ckpt) no_decay = ["bias", "LayerNorm.weight", "LayerNorm.bias"] optimizer_grouped_parameters = [ { "params": [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay) ], "weight_decay": 0.0, }, { "params": [ p for n, p in model.named_parameters() if any(nd in n for nd in no_decay) ], "weight_decay": 0.0, }, ] optimizer = AdamW(optimizer_grouped_parameters) model.to(device) # if n_gpu > 1: # model = torch.nn.DataParallel(model) best_score = { 'epoch': float("-inf"), 'joint_acc_score': float("-inf"), 'op_acc': float("-inf"), 'final_slot_f1': float("-inf") } best_epoch = 0 for epoch in range(args.n_epochs): batch_loss = [] model.train() for step in tqdm(range(len(train_data_raw)), desc="training"): inp = model.generate_train_instances(train_data_raw[step], ontology, tokenizer, device) # ignore dialog with no training slots if not inp: continue loss = model(**inp) batch_loss.append(loss.item()) loss.backward() optimizer.step() model.zero_grad() if step % 100 == 0: print("[%d/%d] [%d/%d] mean_loss : %.3f" % (epoch + 1, args.n_epochs, step, len(train_data_raw), np.mean(batch_loss))) batch_loss = [] if (epoch + 1) % args.eval_epoch == 0: eval_res, res_per_domain, pred = model.evaluate( dev_data_raw, tokenizer, ontology, slot_meta, epoch + 1, device) # if eval_res['joint_acc_score'] > best_score['joint_acc_score']: best_score['joint_acc_score'] = eval_res['joint_acc_score'] model_to_save = model.module if hasattr(model, 'module') else model save_path = os.path.join(args.out_dir, args.filename + '.bin') torch.save(model_to_save.state_dict(), save_path) best_epoch = epoch + 1 print("Best Score : ", best_score['joint_acc_score']) print("\n") print("Test using best model...") ckpt_path = os.path.join(args.out_dir, args.filename + '.bin') model = DST_PICK.from_pretrained('bert-base-uncased') ckpt = torch.load(ckpt_path, map_location='cpu') model.load_state_dict(ckpt) model.to(device) eval_res, res_per_domain, pred = model.evaluate(dev_data_raw, tokenizer, ontology, slot_meta, best_epoch, device) # save to file save_result_to_file(args.out_dir + "/" + args.filename + ".res", eval_res, res_per_domain) json.dump(pred, open('%s.pred' % (args.out_dir + "/" + args.filename), 'w'))
def main(args): def worker_init_fn(worker_id): np.random.seed(args.random_seed + worker_id) n_gpu = 0 if torch.cuda.is_available(): n_gpu = torch.cuda.device_count() np.random.seed(args.random_seed) random.seed(args.random_seed) rng = random.Random(args.random_seed) torch.manual_seed(args.random_seed) if n_gpu > 0: torch.cuda.manual_seed(args.random_seed) torch.cuda.manual_seed_all(args.random_seed) torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True if not os.path.exists(args.save_dir): os.mkdir(args.save_dir) ontology = json.load(open(args.ontology_data)) slot_meta, ontology = make_slot_meta(ontology) op2id = OP_SET[args.op_code] # print(op2id) tokenizer = BertTokenizer.from_pretrained("dsksd/bert-ko-small-minimal") out_path = '/opt/ml/code/new-som-dst/pickles' if os.path.exists(out_path): print("Pickles are exist!") with open(out_path + '/train_data_raw.pkl', 'rb') as f: train_data_raw = pickle.load(f) with open(out_path + '/train_data.pkl', 'rb') as f: train_data = pickle.load(f) with open(out_path + '/dev_data_raw.pkl', 'rb') as f: dev_data_raw = pickle.load(f) print("Pickles brought!") else: print("Pickles are not exist!") train_dials, dev_dials = load_dataset(args.train_data_path) print(f"t_d_len : {len(train_dials)}, d_d_len : {len(dev_dials)}") train_data_raw = prepare_dataset(dials=train_dials, tokenizer=tokenizer, slot_meta=slot_meta, n_history=args.n_history, max_seq_length=args.max_seq_length, op_code=args.op_code) # print("train_data_raw is ready") train_data = WosDataset(train_data_raw, tokenizer, slot_meta, args.max_seq_length, rng, ontology, args.word_dropout, args.shuffle_state, args.shuffle_p) dev_data_raw = prepare_dataset(dials=dev_dials, tokenizer=tokenizer, slot_meta=slot_meta, n_history=args.n_history, max_seq_length=args.max_seq_length, op_code=args.op_code) # print(len(dev_data_raw)) os.makedirs(out_path, exist_ok=True) with open(out_path + '/train_data_raw.pkl', 'wb') as f: pickle.dump(train_data_raw, f) with open(out_path + '/train_data.pkl', 'wb') as f: pickle.dump(train_data, f) with open(out_path + '/dev_data_raw.pkl', 'wb') as f: pickle.dump(dev_data_raw, f) print("Pickles saved!") print("# train examples %d" % len(train_data_raw)) print("# dev examples %d" % len(dev_data_raw)) # test_data_raw = prepare_dataset(data_path=args.test_data_path, # tokenizer=tokenizer, # slot_meta=slot_meta, # n_history=args.n_history, # max_seq_length=args.max_seq_length, # op_code=args.op_code) # print("# test examples %d" % len(test_data_raw)) model_config = BertConfig.from_json_file(args.bert_config_path) model_config.dropout = args.dropout model_config.attention_probs_dropout_prob = args.attention_probs_dropout_prob model_config.hidden_dropout_prob = args.hidden_dropout_prob model = SomDST(model_config, len(op2id), len(domain2id), op2id['update'], args.exclude_domain) ckpt = torch.load('/opt/ml/outputs/model_20.bin', map_location='cpu') model.load_state_dict(ckpt) print(f"model is loaded!") # if not os.path.exists(args.bert_ckpt_path): # args.bert_ckpt_path = download_ckpt(args.bert_ckpt_path, args.bert_config_path, '/opt/ml/code/new-som-dst/assets') # ckpt = torch.load(args.bert_ckpt_path, map_location='cpu') # model.encoder.bert.load_state_dict(ckpt, strict=False) # # re-initialize added special tokens ([SLOT], [NULL], [EOS]) # model.encoder.bert.embeddings.word_embeddings.weight.data[1].normal_(mean=0.0, std=0.02) # model.encoder.bert.embeddings.word_embeddings.weight.data[2].normal_(mean=0.0, std=0.02) # model.encoder.bert.embeddings.word_embeddings.weight.data[3].normal_(mean=0.0, std=0.02) model.to(device) print() wandb.watch(model) num_train_steps = int( len(train_data_raw) / args.batch_size * args.n_epochs) no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight'] enc_param_optimizer = list(model.encoder.named_parameters()) enc_optimizer_grouped_parameters = [{ 'params': [ p for n, p in enc_param_optimizer if not any(nd in n for nd in no_decay) ], 'weight_decay': 0.01 }, { 'params': [p for n, p in enc_param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0 }] enc_optimizer = AdamW(enc_optimizer_grouped_parameters, lr=args.enc_lr) enc_scheduler = get_linear_schedule_with_warmup( enc_optimizer, num_warmup_steps=int(num_train_steps * args.enc_warmup), num_training_steps=num_train_steps) dec_param_optimizer = list(model.decoder.parameters()) dec_optimizer = AdamW(dec_param_optimizer, lr=args.dec_lr) dec_scheduler = get_linear_schedule_with_warmup( dec_optimizer, num_warmup_steps=int(num_train_steps * args.dec_warmup), num_training_steps=num_train_steps) if n_gpu > 1: model = torch.nn.DataParallel(model) train_sampler = RandomSampler(train_data) train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.batch_size, collate_fn=train_data.collate_fn, num_workers=args.num_workers, worker_init_fn=worker_init_fn) loss_fnc = nn.CrossEntropyLoss() best_score = {'epoch': 0, 'joint_acc': 0, 'op_acc': 0, 'final_slot_f1': 0} for epoch in range(args.n_epochs): batch_loss = [] model.train() for step, batch in enumerate(train_dataloader): batch = [ b.to(device) if not isinstance(b, int) else b for b in batch ] input_ids, input_mask, segment_ids, state_position_ids, op_ids,\ domain_ids, gen_ids, max_value, max_update = batch if rng.random() < args.decoder_teacher_forcing: # teacher forcing teacher = gen_ids else: teacher = None domain_scores, state_scores, gen_scores = model( input_ids=input_ids, token_type_ids=segment_ids, state_positions=state_position_ids, attention_mask=input_mask, max_value=max_value, op_ids=op_ids, max_update=max_update, teacher=teacher) # print(f"input_id : {input_ids[0].shape} {input_ids[0]}") # print(f"segment_id : {segment_ids[0].shape} {segment_ids[0]}") # print(f"slot_position : {state_position_ids[0].shape} {state_position_ids[0]}") # print(f"input_mask : {input_mask[0].shape} {input_mask[0]}") # print(f"state_scores : {state_scores[0].shape} {state_scores[0]}") # print(f"gen_scores : {gen_scores[0].shape} {gen_scores[0]}") # print(f"op_ids : {op_ids.shape, op_ids}") loss_s = loss_fnc(state_scores.view(-1, len(op2id)), op_ids.view(-1)) # print("loss_s", loss_s.shape, loss_s) loss_g = masked_cross_entropy_for_value( gen_scores.contiguous(), # B, J', K, V gen_ids.contiguous(), # B, J', K tokenizer.vocab['[PAD]']) # print("loss_g", loss_g) # print(f"gen_scores : {gen_scores.shape, torch.argmax(gen_scores[0][0], -1)}") # print(f"gen_ids : {gen_ids.shape, gen_ids[0][0], tokenizer.decode(gen_ids[0][0])}") loss = loss_s + loss_g if args.exclude_domain is not True: loss_d = loss_fnc(domain_scores.view(-1, len(domain2id)), domain_ids.view(-1)) loss = loss + loss_d batch_loss.append(loss.item()) loss.backward() enc_optimizer.step() enc_scheduler.step() dec_optimizer.step() dec_scheduler.step() model.zero_grad() if (step + 1) % 100 == 0: if args.exclude_domain is not True: print("[%d/%d] [%d/%d] mean_loss : %.3f, state_loss : %.3f, gen_loss : %.3f, dom_loss : %.3f" \ % (epoch+1, args.n_epochs, step+1, len(train_dataloader), np.mean(batch_loss), loss_s.item(), loss_g.item(), loss_d.item())) else: print("[%d/%d] [%d/%d] mean_loss : %.3f, state_loss : %.3f, gen_loss : %.3f" \ % (epoch+1, args.n_epochs, step+1, len(train_dataloader), np.mean(batch_loss), loss_s.item(), loss_g.item())) batch_loss = [] if (epoch + 1) % args.eval_epoch == 0: eval_res = model_evaluation(model, dev_data_raw, tokenizer, slot_meta, epoch + 1, args.op_code) if eval_res['joint_acc'] > best_score['joint_acc']: best_score = eval_res model_to_save = model.module if hasattr(model, 'module') else model save_path = os.path.join(args.save_dir, 'model_best.bin') torch.save(model_to_save.state_dict(), save_path) print("Best Score : ", best_score) print("\n") wandb.log({ 'joint_acc': eval_res['joint_acc'], 'slot_acc': eval_res['slot_acc'], 'slot_f1': eval_res['slot_f1'], 'op_acc': eval_res['op_acc'], 'op_f1': eval_res['op_f1'], 'final_slot_f1': eval_res['final_slot_f1'] }) # save model at 10 epochs if (epoch + 1) % 10 == 0: model_to_save = model.module if hasattr(model, 'module') else model save_path = os.path.join(args.save_dir, f'model_{epoch+1}.bin') torch.save(model_to_save.state_dict(), save_path) print(f"model_{epoch}.bin is saved!")