示例#1
0
with open(model_json, "r") as json_file:
    loaded_model_json = json_file.read()
times = []
s = time.time()
cycle_gan_generator = model_from_json(loaded_model_json)
# load weights
cycle_gan_generator.load_weights(model_h5)
tot = time.time() - s
times.append(tot)
print("\nLoaded data and model")

# testing loop
for img_path in test_paths:
    # prepare data
    img_name = ntpath.basename(img_path).split('.')[0]
    im = read_and_resize(img_path, (256, 256))
    im = preprocess(im)
    im = np.expand_dims(im, axis=0)  # (1,256,256,3)
    # generate enhanced image
    s = time.time()
    gen = cycle_gan_generator.predict(im)
    gen = deprocess(gen)  # Rescale to 0-1
    tot = time.time() - s
    times.append(tot)
    # save samples
    misc.imsave(samples_dir + img_name + '_real.png', im[0])
    misc.imsave(samples_dir + img_name + '_gen.png', gen[0])

# some statistics
num_test = len(test_paths)
if (num_test == 0):
示例#2
0
model_json = checkpoint_dir + model_name_by_epoch + ".json"

with open(model_json, "r") as json_file:
    loaded_model_json = json_file.read()
funie_gan_generator = model_from_json(loaded_model_json)
funie_gan_generator.load_weights(model_h5)
print("\nLoaded data and model")

times = []
s = time.time()
for root, dirs, files in os.walk(test_paths):
    for img_path in files:
        if not img_path.lower().endswith('.jpg'):
            continue
        img_name = ntpath.basename(img_path).split('.')[0]
        im, shape = read_and_resize(os.path.join(root, img_path), (256, 256))
        im = preprocess(im)
        s = time.time()
        gen = funie_gan_generator.predict(im)
        gen = deprocess(gen, shape)
        tot = time.time() - s
        times.append(tot)
        misc.imsave(os.path.join(root, img_name + '_gen.png'), gen[0])

    # some statistics
    num_test = len(test_paths)
    if (num_test == 0):
        print("\nFound no images for test")
    else:
        print("\nTotal images: {0}".format(num_test))