def test_build_tf_record_input_reader(self): tf_record_path = self.create_tf_record() input_reader_text_proto = """ shuffle: false num_readers: 1 tf_record_input_reader {{ input_path: '{0}' }} """.format(tf_record_path) input_reader_proto = input_reader_pb2.InputReader() text_format.Merge(input_reader_text_proto, input_reader_proto) tensor_dict = dataset_util.make_initializable_iterator( dataset_builder.build(input_reader_proto)).get_next() sv = tf.train.Supervisor(logdir=self.get_temp_dir()) with sv.prepare_or_wait_for_session() as sess: sv.start_queue_runners(sess) output_dict = sess.run(tensor_dict) self.assertTrue(fields.InputDataFields.groundtruth_instance_masks not in output_dict) self.assertEquals((4, 5, 3), output_dict[fields.InputDataFields.image].shape) self.assertEquals( [2], output_dict[fields.InputDataFields.groundtruth_classes]) self.assertEquals( (1, 4), output_dict[fields.InputDataFields.groundtruth_boxes].shape) self.assertAllEqual( [0.0, 0.0, 1.0, 1.0], output_dict[fields.InputDataFields.groundtruth_boxes][0])
def test_make_initializable_iterator_with_hashTable(self): keys = [1, 0, -1] dataset = tf.data.Dataset.from_tensor_slices([[1, 2, -1, 5]]) table = tf.contrib.lookup.HashTable( initializer=tf.contrib.lookup.KeyValueTensorInitializer( keys=keys, values=list(reversed(keys))), default_value=100) dataset = dataset.map(table.lookup) data = dataset_util.make_initializable_iterator(dataset).get_next() init = tf.tables_initializer() with self.test_session() as sess: sess.run(init) self.assertAllEqual(sess.run(data), [-1, 100, 1, 100])
def test_build_tf_record_input_reader_with_batch_size_two(self): tf_record_path = self.create_tf_record() input_reader_text_proto = """ shuffle: false num_readers: 1 tf_record_input_reader {{ input_path: '{0}' }} """.format(tf_record_path) input_reader_proto = input_reader_pb2.InputReader() text_format.Merge(input_reader_text_proto, input_reader_proto) def one_hot_class_encoding_fn(tensor_dict): tensor_dict[ fields.InputDataFields.groundtruth_classes] = tf.one_hot( tensor_dict[fields.InputDataFields.groundtruth_classes] - 1, depth=3) return tensor_dict tensor_dict = dataset_util.make_initializable_iterator( dataset_builder.build( input_reader_proto, transform_input_data_fn=one_hot_class_encoding_fn, batch_size=2, max_num_boxes=2, num_classes=3, spatial_image_shape=[4, 5])).get_next() sv = tf.train.Supervisor(logdir=self.get_temp_dir()) with sv.prepare_or_wait_for_session() as sess: sv.start_queue_runners(sess) output_dict = sess.run(tensor_dict) self.assertAllEqual([2, 4, 5, 3], output_dict[fields.InputDataFields.image].shape) self.assertAllEqual( [2, 2, 3], output_dict[fields.InputDataFields.groundtruth_classes].shape) self.assertAllEqual( [2, 2, 4], output_dict[fields.InputDataFields.groundtruth_boxes].shape) self.assertAllEqual( [[[0.0, 0.0, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0]], [[0.0, 0.0, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0]]], output_dict[fields.InputDataFields.groundtruth_boxes])
def test_build_tf_record_input_reader_and_load_instance_masks(self): tf_record_path = self.create_tf_record() input_reader_text_proto = """ shuffle: false num_readers: 1 load_instance_masks: true tf_record_input_reader {{ input_path: '{0}' }} """.format(tf_record_path) input_reader_proto = input_reader_pb2.InputReader() text_format.Merge(input_reader_text_proto, input_reader_proto) tensor_dict = dataset_util.make_initializable_iterator( dataset_builder.build(input_reader_proto, batch_size=1)).get_next() sv = tf.train.Supervisor(logdir=self.get_temp_dir()) with sv.prepare_or_wait_for_session() as sess: sv.start_queue_runners(sess) output_dict = sess.run(tensor_dict) self.assertAllEqual( (1, 1, 4, 5), output_dict[fields.InputDataFields.groundtruth_instance_masks].shape)
def get_next(config): return dataset_util.make_initializable_iterator( dataset_builder.build(config)).get_next()
def _eval_input_fn(params=None): """Returns `features` and `labels` tensor dictionaries for evaluation. Args: params: Parameter dictionary passed from the estimator. Returns: features: Dictionary of feature tensors. features[fields.InputDataFields.image] is a [1, H, W, C] float32 tensor with preprocessed images. features[HASH_KEY] is a [1] int32 tensor representing unique identifiers for the images. features[fields.InputDataFields.true_image_shape] is a [1, 3] int32 tensor representing the true image shapes, as preprocessed images could be padded. features[fields.InputDataFields.original_image] is a [1, H', W', C] float32 tensor with the original image. labels: Dictionary of groundtruth tensors. labels[fields.InputDataFields.groundtruth_boxes] is a [1, num_boxes, 4] float32 tensor containing the corners of the groundtruth boxes. labels[fields.InputDataFields.groundtruth_classes] is a [num_boxes, num_classes] float32 one-hot tensor of classes. labels[fields.InputDataFields.groundtruth_area] is a [1, num_boxes] float32 tensor containing object areas. labels[fields.InputDataFields.groundtruth_is_crowd] is a [1, num_boxes] bool tensor indicating if the boxes enclose a crowd. labels[fields.InputDataFields.groundtruth_difficult] is a [1, num_boxes] int32 tensor indicating if the boxes represent difficult instances. -- Optional -- labels[fields.InputDataFields.groundtruth_instance_masks] is a [1, num_boxes, H, W] float32 tensor containing only binary values, which represent instance masks for objects. Raises: TypeError: if the `eval_config` or `eval_input_config` are not of the correct type. """ del params if not isinstance(eval_config, eval_pb2.EvalConfig): raise TypeError('For eval mode, the `eval_config` must be a ' 'train_pb2.EvalConfig.') if not isinstance(eval_input_config, input_reader_pb2.InputReader): raise TypeError('The `eval_input_config` must be a ' 'input_reader_pb2.InputReader.') if not isinstance(model_config, model_pb2.DetectionModel): raise TypeError('The `model_config` must be a ' 'model_pb2.DetectionModel.') num_classes = config_util.get_number_of_classes(model_config) model = model_builder.build(model_config, is_training=False) image_resizer_config = config_util.get_image_resizer_config( model_config) image_resizer_fn = image_resizer_builder.build(image_resizer_config) transform_data_fn = functools.partial( transform_input_data, model_preprocess_fn=model.preprocess, image_resizer_fn=image_resizer_fn, num_classes=num_classes, data_augmentation_fn=None, retain_original_image=True) dataset = dataset_builder.build( eval_input_config, transform_input_data_fn=transform_data_fn) input_dict = dataset_util.make_initializable_iterator( dataset).get_next() hash_from_source_id = tf.string_to_hash_bucket_fast( input_dict[fields.InputDataFields.source_id], HASH_BINS) features = { fields.InputDataFields.image: input_dict[fields.InputDataFields.image], fields.InputDataFields.original_image: input_dict[fields.InputDataFields.original_image], HASH_KEY: tf.cast(hash_from_source_id, tf.int32), fields.InputDataFields.true_image_shape: input_dict[fields.InputDataFields.true_image_shape] } labels = { fields.InputDataFields.groundtruth_boxes: input_dict[fields.InputDataFields.groundtruth_boxes], fields.InputDataFields.groundtruth_classes: input_dict[fields.InputDataFields.groundtruth_classes], fields.InputDataFields.groundtruth_area: input_dict[fields.InputDataFields.groundtruth_area], fields.InputDataFields.groundtruth_is_crowd: input_dict[fields.InputDataFields.groundtruth_is_crowd], fields.InputDataFields.groundtruth_difficult: tf.cast(input_dict[fields.InputDataFields.groundtruth_difficult], tf.int32) } if fields.InputDataFields.groundtruth_instance_masks in input_dict: labels[fields.InputDataFields. groundtruth_instance_masks] = input_dict[ fields.InputDataFields.groundtruth_instance_masks] # Add a batch dimension to the tensors. features = { key: tf.expand_dims(features[key], axis=0) for key, feature in features.items() } labels = { key: tf.expand_dims(labels[key], axis=0) for key, label in labels.items() } return features, labels
def _train_input_fn(params=None): """Returns `features` and `labels` tensor dictionaries for training. Args: params: Parameter dictionary passed from the estimator. Returns: features: Dictionary of feature tensors. features[fields.InputDataFields.image] is a [batch_size, H, W, C] float32 tensor with preprocessed images. features[HASH_KEY] is a [batch_size] int32 tensor representing unique identifiers for the images. features[fields.InputDataFields.true_image_shape] is a [batch_size, 3] int32 tensor representing the true image shapes, as preprocessed images could be padded. labels: Dictionary of groundtruth tensors. labels[fields.InputDataFields.num_groundtruth_boxes] is a [batch_size] int32 tensor indicating the number of groundtruth boxes. labels[fields.InputDataFields.groundtruth_boxes] is a [batch_size, num_boxes, 4] float32 tensor containing the corners of the groundtruth boxes. labels[fields.InputDataFields.groundtruth_classes] is a [batch_size, num_boxes, num_classes] float32 one-hot tensor of classes. labels[fields.InputDataFields.groundtruth_weights] is a [batch_size, num_boxes] float32 tensor containing groundtruth weights for the boxes. -- Optional -- labels[fields.InputDataFields.groundtruth_instance_masks] is a [batch_size, num_boxes, H, W] float32 tensor containing only binary values, which represent instance masks for objects. labels[fields.InputDataFields.groundtruth_keypoints] is a [batch_size, num_boxes, num_keypoints, 2] float32 tensor containing keypoints for each box. Raises: TypeError: if the `train_config` or `train_input_config` are not of the correct type. """ if not isinstance(train_config, train_pb2.TrainConfig): raise TypeError('For training mode, the `train_config` must be a ' 'train_pb2.TrainConfig.') if not isinstance(train_input_config, input_reader_pb2.InputReader): raise TypeError('The `train_input_config` must be a ' 'input_reader_pb2.InputReader.') if not isinstance(model_config, model_pb2.DetectionModel): raise TypeError('The `model_config` must be a ' 'model_pb2.DetectionModel.') data_augmentation_options = [ preprocessor_builder.build(step) for step in train_config.data_augmentation_options ] data_augmentation_fn = functools.partial( augment_input_data, data_augmentation_options=data_augmentation_options) model = model_builder.build(model_config, is_training=True) image_resizer_config = config_util.get_image_resizer_config( model_config) image_resizer_fn = image_resizer_builder.build(image_resizer_config) transform_data_fn = functools.partial( transform_input_data, model_preprocess_fn=model.preprocess, image_resizer_fn=image_resizer_fn, num_classes=config_util.get_number_of_classes(model_config), data_augmentation_fn=data_augmentation_fn) dataset = dataset_builder.build( train_input_config, transform_input_data_fn=transform_data_fn, batch_size=params['batch_size'] if params else train_config.batch_size, max_num_boxes=train_config.max_number_of_boxes, num_classes=config_util.get_number_of_classes(model_config), spatial_image_shape=config_util.get_spatial_image_size( image_resizer_config)) tensor_dict = dataset_util.make_initializable_iterator( dataset).get_next() hash_from_source_id = tf.string_to_hash_bucket_fast( tensor_dict[fields.InputDataFields.source_id], HASH_BINS) features = { fields.InputDataFields.image: tensor_dict[fields.InputDataFields.image], HASH_KEY: tf.cast(hash_from_source_id, tf.int32), fields.InputDataFields.true_image_shape: tensor_dict[fields.InputDataFields.true_image_shape] } labels = { fields.InputDataFields.num_groundtruth_boxes: tensor_dict[fields.InputDataFields.num_groundtruth_boxes], fields.InputDataFields.groundtruth_boxes: tensor_dict[fields.InputDataFields.groundtruth_boxes], fields.InputDataFields.groundtruth_classes: tensor_dict[fields.InputDataFields.groundtruth_classes], fields.InputDataFields.groundtruth_weights: tensor_dict[fields.InputDataFields.groundtruth_weights] } if fields.InputDataFields.groundtruth_keypoints in tensor_dict: labels[fields.InputDataFields.groundtruth_keypoints] = tensor_dict[ fields.InputDataFields.groundtruth_keypoints] if fields.InputDataFields.groundtruth_instance_masks in tensor_dict: labels[fields.InputDataFields. groundtruth_instance_masks] = tensor_dict[ fields.InputDataFields.groundtruth_instance_masks] return features, labels