示例#1
0
def step(split, epoch, opt, dataLoader, model, criterion, optimizer=None):
    if split == 'train':
        model.train()
    else:
        model.eval()
    Loss, Acc, Mpjpe, Loss3D = AverageMeter(), AverageMeter(), AverageMeter(
    ), AverageMeter()

    nIters = len(dataLoader)
    bar = Bar('==>', max=nIters)

    for i, (input, target2D, target3D, meta) in enumerate(dataLoader):
        input_var = torch.autograd.Variable(input).float().cuda()
        target2D_var = torch.autograd.Variable(target2D).float().cuda()
        target3D_var = torch.autograd.Variable(target3D).float().cuda()

        depMap, depth = model(input_var, target2D_var)
        depthPridict = depth[opt.nStack - 1]
        if opt.DEBUG >= 2:
            gt = getPreds(target2D.cpu().numpy()) * 4
            pred = getPreds((depMap[opt.nStack - 1].data).cpu().numpy()) * 4
            debugger = Debugger()
            debugger.addImg(
                (input[0].numpy().transpose(1, 2, 0) * 256).astype(np.uint8))
            debugger.addPoint2D(pred[0], (255, 0, 0))
            debugger.addPoint2D(gt[0], (0, 0, 255))
            debugger.showImg()
            debugger.saveImg('debug/{}.png'.format(i))

        loss = 0
        for k in range(opt.nStack):
            loss += criterion(depth[k], target3D_var[:, :, 2])

        Loss.update(loss.data[0], input.size(0))
        #Acc.update(Accuracy((output[opt.nStack - 1].data).cpu().numpy(), (target2D_var.data).cpu().numpy()))
        mpjpe, num3D = MPJPE2(target3D.cpu().numpy(),
                              (depthPridict.data).cpu().numpy(), meta)
        Mpjpe.update(mpjpe, num3D)

        if split == 'train':
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

        Bar.suffix = '{split} Epoch: [{0}][{1}/{2}]| Total: {total:} | ETA: {eta:} | Loss {loss.avg:.6f} | Mpjpe {Mpjpe.avg:.6f} ({Mpjpe.val:.6f})'.format(
            epoch,
            i,
            nIters,
            total=bar.elapsed_td,
            eta=bar.eta_td,
            loss=Loss,
            split=split,
            Mpjpe=Mpjpe)
        bar.next()

    bar.finish()
    return Loss.avg, Acc.avg, Mpjpe.avg, Loss3D.avg
示例#2
0
def initLatent(loader, model, Y, nViews, S, AVG = False):
  model.eval()
  nIters = len(loader)
  N = loader.dataset.nImages 
  M = np.zeros((N, ref.J, 3))
  bar = Bar('==>', max=nIters)
  sum_sigma2 = 0
  cnt_sigma2 = 1
  for i, (input, target, meta) in enumerate(loader):
    output = (model(torch.autograd.Variable(input)).data).cpu().numpy()
    G = output.shape[0] / nViews
    output = output.reshape(G, nViews, ref.J, 3)
    if AVG:
      for g in range(G):
        id = int(meta[g * nViews, 1])
        for j in range(nViews):
          RR, tt = horn87(output[g, j].transpose(), output[g, 0].transpose())
          MM = (np.dot(RR, output[g, j].transpose())).transpose().copy()
          M[id] += MM.copy() / nViews
    else:
      for g in range(G):
        #assert meta[g * nViews, 0] > 1 + ref.eps
        p = np.zeros(nViews)
        sigma2 = 0.1
        for j in range(nViews):
          for kk in range(Y.shape[0] / S):
            k = kk * S
            d = Dis(Y[k], output[g, j])
            sum_sigma2 += d 
            cnt_sigma2 += 1
            p[j] += np.exp(- d / 2 / sigma2)
            
        id = int(meta[g * nViews, 1])
        M[id] = output[g, p.argmax()]
        
        if DEBUG and g == 0:
          print 'M[id]', id, M[id], p.argmax()
          debugger = Debugger()
          for j in range(nViews):
            RR, tt = horn87(output[g, j].transpose(), output[g, p.argmax()].transpose())
            MM = (np.dot(RR, output[g, j].transpose())).transpose().copy()
            debugger.addPoint3D(MM, 'b')
            debugger.addImg(input[g * nViews + j].numpy().transpose(1, 2, 0), j)
          debugger.showAllImg()
          debugger.addPoint3D(M[id], 'r')
          debugger.show3D()
        
    
    Bar.suffix = 'Init    : [{0:3}/{1:3}] | Total: {total:} | ETA: {eta:} | Dis: {dis:.6f}'.format(i, nIters, total=bar.elapsed_td, eta=bar.eta_td, dis = sum_sigma2 / cnt_sigma2)
    bar.next()
  bar.finish()
  #print 'mean sigma2', sum_sigma2 / cnt_sigma2
  return M
示例#3
0
def main():
    opt = opts().parse()
    #if opt.loadModel != 'none':
    model = AlexNet(ref.nJoints).cuda()

    model.load_state_dict(torch.load("save.model"))

    for (i, filename) in enumerate(os.listdir("./testimages/")):

        img = cv2.imread("./testimages/" + filename)
        c = np.ones(2) * ref.h36mImgSize / 2
        s = ref.h36mImgSize * 1.0
        img2 = Crop(img, c, s, 0, ref.inputRes) / 256.

        input = torch.from_numpy(img2)

        input = input.contiguous().view(1, input.size(0), input.size(1),
                                        input.size(2))

        print(input.size())

        input_var = torch.autograd.Variable(input).float().cuda()
        output = model(input_var)
        print(output.size())
        reg = (output.data).cpu().numpy()  #.reshape(pred.shape[0], 1)

        four = lambda t: t * 4.57
        fourfunc = np.vectorize(four)
        reg = fourfunc(reg)

        print(reg)

        debugger = Debugger()
        debugger.addImg(
            (input[0].numpy().transpose(1, 2, 0) * 256).astype(np.uint8))
        debugger.addPoint2D(reg, (255, 0, 0))

        #debugger.addPoint3D(np.concatenate([pred, (reg + 1) / 2. * 256], axis = 1))

        debugger.saveImg(path="./result/" + filename)

        np.set_printoptions(threshold=np.inf, linewidth=np.inf)

        with open("./result/" + filename[:-4] + ".out", 'w') as f:
            f.write(np.array2string(reg, separator=', '))
        """
示例#4
0
def main():
  opt = opts().parse()
  if opt.loadModel != 'none':
    model = torch.load(opt.loadModel).cuda()
  else:
    model = torch.load('hgreg-3d.pth').cuda()
  img = cv2.imread(opt.demo)
  input = torch.from_numpy(img.transpose(2, 0, 1)).float() / 256.
  input = input.view(1, input.size(0), input.size(1), input.size(2))
  input_var = torch.autograd.Variable(input).float().cuda()
  output = model(input_var)
  pred = getPreds((output[-2].data).cpu().numpy())[0] * 4
  reg = (output[-1].data).cpu().numpy().reshape(pred.shape[0], 1)
  debugger = Debugger()
  debugger.addImg((input[0].numpy().transpose(1, 2, 0)*256).astype(np.uint8))
  debugger.addPoint2D(pred, (255, 0, 0))
  debugger.addPoint3D(np.concatenate([pred, (reg + 1) / 2. * 256], axis = 1))
  debugger.showImg(pause = True)
  debugger.show3D()
示例#5
0
def check_logic():
  preproc = nn.ModuleList([model.conv1_, model.bn1, model.relu, model.r1, model.maxpool, model.r4, model.r5 ])
  hg = model.hourglass[0]
  lower_hg = getEncoder(hg) 
  data_loader = torch.utils.data.DataLoader(
      H36M(opts, 'val'),
      batch_size = 1, 
      shuffle = False,
      num_workers = int(ref.nThreads)
  )
  for k, (input, target) in enumerate(data_loader):
      if(k>nSamples):
          break
      input_var = torch.autograd.Variable(input).float().cuda()
      for mod in preproc:
          input_var = mod(input_var)
      for mod in lower_hg:
          input_var = mod(input_var)    
      #decode  
      ups = input_var
      upper_hg = nn.ModuleList(getDecoder(hg))
      for mod in upper_hg:
          ups = mod(ups)
      Residual = model.Residual
      for j in range(nModules):
        ups = Residual[j](ups)
      lin_ = model.lin_
      ups = lin_[0](ups)
      tmpOut = model.tmpOut
      ups = tmpOut[0](ups)
      pred = eval.getPreds(ups.data.cpu().numpy())*4   
      gt = eval.getPreds(target.cpu().numpy()) * 4
      # init = getPreds(input.numpy()[:, 3:])
      debugger = Debugger()
      img = (input[0].numpy()[:3].transpose(1, 2, 0)*256).astype(np.uint8).copy()
      print(img.shape)
      debugger.addImg(img)
      debugger.addPoint2D(pred[0], (255, 0, 0))
      debugger.addPoint2D(gt[0], (0, 0, 255))
      # debugger.addPoint2D(init[0], (0, 255, 0))
      debugger.showAllImg(pause = True)
示例#6
0
def generate(imageName):

    process_image(imageName)
    model = torch.load('../model/Stage3/model_10.pth',
                       map_location=lambda storage, loc: storage)
    img = cv2.imread(imageName)
    input = torch.from_numpy(img.transpose(2, 0, 1)).float() / 256.
    input = input.view(1, input.size(0), input.size(1), input.size(2))
    input_var = torch.autograd.Variable(input).float()
    output = model(input_var)

    print(output[-2].data[0][-2].shape)
    pred = getPreds((output[-2].data).cpu().numpy())[0] * 4
    reg = (output[-1].data).cpu().numpy().reshape(pred.shape[0], 1)
    print(pred, (reg + 1) / 2. * 256)
    debugger = Debugger()
    debugger.addImg(
        (input[0].numpy().transpose(1, 2, 0) * 256).astype(np.uint8))
    debugger.addPoint2D(pred, (255, 0, 0))
    debugger.addPoint3D(np.concatenate([pred, (reg + 1) / 2. * 256], axis=1))
    debugger.showImg(pause=True)
    debugger.show3D()
    '''
def main():
	pickle.load = partial(pickle.load, encoding="latin1")
	pickle.Unpickler = partial(pickle.Unpickler, encoding="latin1")
	opt = opts().parse()
	if opt.loadModel != 'none':
		model = torch.load(opt.loadModel).cuda()	
	else:
		model = torch.load('../../tr_models/hgreg-3d.pth').cuda()

	#opt.demo has the path to dir containing frames of demo video
	all_frames = os.listdir(opt.demo)
	n_frames = len(all_frames)
	#specifics
	dir_name = opt.demo.split('/')[-1]
	save_path = '../../output/demo/'+dir_name
	try:
		os.makedirs(save_path)
	except OSError:
		pass

	for idx, frame in enumerate(all_frames):
		print('processing frame {}'.format(idx))
		img = cv2.imread(opt.demo+'/'+frame)
		input = torch.from_numpy(img.transpose(2, 0, 1)).float() / 256.
		input = input.view(1, input.size(0), input.size(1), input.size(2))
		input_var = torch.autograd.Variable(input).float().cuda()
		output = model(input_var)
		pred = getPreds((output[-2].data).cpu().numpy())[0] * 4
		reg = (output[-1].data).cpu().numpy().reshape(pred.shape[0], 1)
		debugger = Debugger()
		debugger.addImg((input[0].numpy().transpose(1, 2, 0)*256).astype(np.uint8))
		debugger.addPoint2D(pred, (255, 0, 0))
		debugger.addPoint3D(np.concatenate([pred, (reg + 1) / 2. * 256], axis = 1))
		# debugger.showImg(pause = True)
		debugger.saveImg(path=save_path+'/frame{}.jpg'.format(idx))
		debugger.save3D(path=save_path+'/frame_p3d{}.jpg'.format(idx))
		print('frame {} done'.format(idx))
class PoseExtractor:
    def __init__(self, flag_save_pose_image, flag_save_pose_file):
        rospy.loginfo("Initializing 3D Pose Extractor")

        self.frameInfo = FrameInfo()
        self.bridge = CvBridge()
        self.lock = Lock()
        self.image_shape = (256, 256, 3)
        self.debugger = Debugger()
        self.tracking_info_topic = rospy.get_param(
            '~tracking_info_topic', '/person_tracker/tracking_info')
        self.model_name = rospy.get_param('~pose_model', 'hgreg-3d.pth')
        self.model = {}
        self.save_pose_image = flag_save_pose_image
        self.save_pose_file = flag_save_pose_file
        self.publish_person = False
        self.initModel()

        self.frame_info_pub = rospy.Publisher('~frame_info',
                                              FrameInfo,
                                              queue_size=1)
        self.person_pub = rospy.Publisher('~person', Person, queue_size=1)
        self.tracking_info_sub = rospy.Subscriber(self.tracking_info_topic,
                                                  FrameInfo,
                                                  self.trackingInfoCallback,
                                                  queue_size=1)

    def trackingInfoCallback(self, tracking_info_msg):
        begin = time.time()

        self.frameInfo.frame_id = tracking_info_msg.frame_id
        self.frameInfo.image_frame = tracking_info_msg.image_frame
        self.frameInfo.last_frame = tracking_info_msg.last_frame
        rospy.loginfo("Frame ID: {}".format(self.frameInfo.frame_id))

        persons = tracking_info_msg.persons
        numPersons = len(persons)

        if numPersons != 0:
            for person in persons:
                rospy.loginfo("Person {} is detected".format(person.person_id))

            try:
                # multi-threading for publishing single person
                #p = ThreadPool(numPersons)
                #p.map(self.poseEstimation, persons)
                #p.close()

                for person in persons:
                    self.poseEstimation(person)

                self.frame_info_pub.publish(self.frameInfo)
                self.frameInfo = FrameInfo()

                if tracking_info_msg.last_frame:
                    rospy.loginfo('Last frame in the video!')

            except BaseException as e:
                rospy.logerr(e)

        else:
            rospy.logwarn("No person is detected!")
            self.frame_info_pub.publish(self.frameInfo)

            if tracking_info_msg.last_frame:
                rospy.loginfo('Last frame in the video!')

        rospy.loginfo("FPS: {}".format(1 / (time.time() - begin)))

    def poseEstimation(self, tracked_person):
        person_id = tracked_person.person_id

        try:
            curImage = self.bridge.imgmsg_to_cv2(self.frameInfo.image_frame)
            person_image = curImage[
                int(tracked_person.bbox.top):int(tracked_person.bbox.top +
                                                 tracked_person.bbox.height),
                int(tracked_person.bbox.left):int(tracked_person.bbox.left +
                                                  tracked_person.bbox.width)]
        except CvBridgeError as e:
            rospy.logerr(e)

        # Resize input image
        rospy.logdebug("person image shape: {}".format(person_image.shape))
        if person_image.shape != self.image_shape:
            h, w = person_image.shape[0], person_image.shape[1]
            center = torch.FloatTensor((w / 2, h / 2))
            scale = 1.0 * max(h, w)
            res = 256
            input_image = Crop(person_image, center, scale, 0, res)
        else:
            input_image = person_image

        # Feed input image to model
        rospy.loginfo("feeding image to model")
        input = torch.from_numpy(input_image.transpose(2, 0, 1)).float() / 256.
        input = input.view(1, input.size(0), input.size(1), input.size(2))
        input_var = torch.autograd.Variable(input).float().cuda()

        # lock when using model to estimate pose
        self.lock.acquire()
        try:
            output = self.model(input_var)
        finally:
            self.lock.release()

        rospy.logdebug("got output from model")

        # Get 2D pose
        rospy.logdebug("Rendering 2D pose")
        pose2D = getPreds((output[-2].data).cpu().numpy())[0] * 4

        # Get 3D pose
        rospy.logdebug("Rendering 3D pose")
        reg = (output[-1].data).cpu().numpy().reshape(pose2D.shape[0], 1)
        pose3D = np.concatenate([pose2D, (reg + 1) / 2. * 256], axis=1)
        rospy.logdebug("pose 3d shape: {}".format(pose3D.shape))

        for pose in pose3D:
            joint = Point()
            joint.x = pose[0]
            joint.y = pose[1]
            joint.z = pose[2]
            tracked_person.person_pose.append(joint)

        # publish person
        if self.publish_person:
            self.person_pub.publish(tracked_person)

        self.lock.acquire()
        try:
            self.frameInfo.persons.append(tracked_person)
        finally:
            self.lock.release()

        rospy.logdebug("pose3D: \n {}".format(pose3D))

        # Save pose image
        if self.save_pose_image:
            cv2.imwrite(
                pkg_path + '/scripts/debug/original/ogImg_' +
                str(self.frame_id) + '.png', self.cv_image)
            cv2.imwrite(
                pkg_path + '/scripts/debug/input/inputImg_' +
                str(self.frame_id) + '.png', input_image)
            self.debugger.addImg(input_image, imgId=self.frame_id)
            self.debugger.addPoint2D(pose2D, (255, 0, 0), imgId=self.frame_id)
            self.debugger.saveImg(pkg_path + '/scripts/debug/pose/poseImg_' +
                                  str(self.frame_id) + '.png',
                                  imgId=self.frame_id)

        if self.save_pose_file:
            file_name = pkg_path + '/pose_file/pose_{:04d}.txt'.format(
                self.frame_id)
            with file(file_name, 'w') as outfile:
                np.savetxt(outfile, pose3D, fmt='%-7.2f')

        rospy.loginfo("Person {} processing finished".format(person_id))

    # Initialize model
    def initModel(self):
        rospy.loginfo("=====> Loading and Initializing Model")
        model_path = rospkg.RosPack().get_path(
            'pose_3d_ros') + '/models/' + self.model_name
        self.model = torch.load(model_path).cuda()
        img = np.zeros((256, 256, 3))
        input = torch.from_numpy(img.transpose(2, 0, 1)).float() / 256.
        input = input.view(1, input.size(0), input.size(1), input.size(2))
        input_var = torch.autograd.Variable(input).float().cuda()
        output = self.model(input_var)
        rospy.loginfo("Model Initialization Done")
示例#9
0
        img = (input[:3].transpose(1, 2, 0) * 256).astype(np.uint8).copy()
        star = (cv2.resize(hm[0, 0], (ref.inputRes, ref.inputRes)) * 255)
        star[star > 255] = 255
        star[star < 0] = 0
        star = star.astype(np.uint8)

        for k in range(len(ps[0])):
            x, y, z = ((hm[0, 1:4, ps[0][k], ps[1][k]] + 0.5) *
                       ref.outputRes).astype(np.int32)
            dep = ((hm[0, 4, ps[0][k], ps[1][k]] + 0.5) *
                   ref.outputRes).astype(np.int32)
            color.append((1.0 * x / ref.outputRes, 1.0 * y / ref.outputRes,
                          1.0 * z / ref.outputRes))
            cv2.circle(img, (ps[1][k] * 4, ps[0][k] * 4), 6,
                       (int(x * 4), int(y * 4), int(z * 4)), -1)
        debugger.addImg(img)
        debugger.addImg(star, 'star')
        debugger.addPoint3D(np.array((pred)) / 64. - 0.5, c=color, marker='x')
        rotated = Rotate(canonical, gt_view)
        rotated[:,
                2], rotated[:,
                            1] = -rotated[:, 1].copy(), -rotated[:, 2].copy()
        debugger.addPoint3D(np.array(rotated) / 64. - 0.5, c=color, marker='^')

        debugger.showAllImg(pause=False)
        debugger.show3D()
bar.finish()
accAll10 = 0.
accAll30 = 0.
numAll = 0.
mid = {}
示例#10
0
def step(split, epoch, opt, dataLoader, model, criterion, optimizer=None):
    if split == 'train':
        model.train()
    else:
        model.eval()
    Loss, Acc = AverageMeter(), AverageMeter()

    nIters = len(dataLoader)
    # bar = Bar('==>', max=nIters)

    start_time = time.time()

    for i, (input, target) in enumerate(dataLoader):
        input_var = torch.autograd.Variable(input).float().cuda()
        target_var = torch.autograd.Variable(
            target.cuda(async=True)).float().cuda()
        if (model.hgType == 'vae'):
            output, latentspace = model(input_var)
        else:
            output = model(input_var)

        if opt.DEBUG >= 2:
            gt = getPreds(target.cpu().numpy()) * 4
            pred = getPreds((output[opt.nStack - 1].data).cpu().numpy()) * 4
            # init = getPreds(input.numpy()[:, 3:])
            debugger = Debugger()
            img = (input[0].numpy()[:3].transpose(1, 2, 0) * 256).astype(
                np.uint8).copy()
            debugger.addImg(img)
            debugger.addPoint2D(pred[0], (255, 0, 0))
            debugger.addPoint2D(gt[0], (0, 0, 255))
            # debugger.addPoint2D(init[0], (0, 255, 0))
            debugger.showAllImg(pause=True)
            #debugger.saveImg('debug/{}.png'.format(i))

        loss = criterion(output[0], target_var)
        for k in range(1, opt.nStack):
            loss += criterion(output[k], target_var)

        if (model.hgType == 'vae'):
            for k in range(0, opt.nStack):
                loss += ref.vaeloss_wt * _compute_kl(latentspace[k])

        Loss.update(loss.data[0], input.size(0))
        Acc.update(
            Accuracy((output[opt.nStack - 1].data).cpu().numpy(),
                     (target_var.data).cpu().numpy()))
        if split == 'train':
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

        # Bar.suffix = '{split} Epoch: [{0}][{1}/{2}]| Total: {total:} | ETA: {eta:} | Loss {loss.avg:.6f} | Acc {Acc.avg:.6f} ({Acc.val:.6f})'.format(epoch, i, nIters, total=bar.elapsed_td, eta=bar.eta_td, loss=Loss, Acc=Acc, split = split)
        # bar.next()
        curr_time = time.time()
        print(
            '{split} Epoch: [{0}][{1}/{2}]| Total: {total:f} | ETA: {eta:f} | Loss {loss.avg:.6f} | Acc {Acc.avg:.6f} ({Acc.val:.6f})'
            .format(epoch,
                    i,
                    nIters,
                    total=curr_time - start_time,
                    eta=(curr_time - start_time) * (nIters - i + 1) / (i + 1),
                    loss=Loss,
                    Acc=Acc,
                    split=split))

    # bar.finish()
    return Loss.avg, Acc.avg
示例#11
0
        scale = 1.0 * h / mheight
        new_im = image.resize((int(w / scale), int(h / scale)),
                              Image.ANTIALIAS)
    new_im.save(filename)
    new_im.close()


#opt = opts().parse()

imageName = './images/test3.jpg'

#process_image(imageName)

model = torch.load('../model/Stage3/model_10.pth',
                   map_location=lambda storage, loc: storage)
img = cv2.imread(imageName)
print(type(np.array(img)))
input = torch.from_numpy(img.transpose(2, 0, 1)).float() / 256.
input = input.view(1, input.size(0), input.size(1), input.size(2))
input_var = torch.autograd.Variable(input).float()
output = model(input_var)
pred = getPreds((output[-2].data).cpu().numpy())[0] * 4
reg = (output[-1].data).cpu().numpy().reshape(pred.shape[0], 1)
print(pred, (reg + 1) / 2. * 256)
debugger = Debugger()
debugger.addImg((input[0].numpy().transpose(1, 2, 0) * 256).astype(np.uint8))
debugger.addPoint2D(pred, (255, 0, 0))
debugger.addPoint3D(np.concatenate([pred, (reg + 1) / 2. * 256], axis=1))
debugger.showImg(pause=True)
debugger.show3D()
def step(split, epoch, opt, dataLoader, model, criterion, optimizer=None):
    if split == 'train':
        model.train()
    else:
        model.eval()
    Loss, Acc = AverageMeter(), AverageMeter()
    preds = []

    nIters = len(dataLoader)
    bar = Bar('{}'.format(opt.expID), max=nIters)

    for i, (input, targets, action, meta) in enumerate(dataLoader):
        input_var = torch.autograd.Variable(input).float().cuda(opt.GPU)
        target_var = []
        for t in range(len(targets)):
            target_var.append(
                torch.autograd.Variable(targets[t]).float().cuda(opt.GPU))
        z = []
        for k in range(opt.numNoise):
            noise = torch.autograd.Variable(
                torch.randn((input_var.shape[0], 1, 64, 64))).cuda(opt.GPU)
            z.append(noise)

        output, samples = model(input_var, z, action)
        pred_sample = maximumExpectedUtility(samples, criterion)
        target = maximumExpectedUtility(target_var, criterion)

        if opt.DEBUG >= 2:
            gt = getPreds(target.cpu().numpy()) * 4
            pred = getPreds((pred_sample.data).cpu().numpy()) * 4
            debugger = Debugger()
            img = (input[0].numpy().transpose(1, 2, 0) * 256).astype(
                np.uint8).copy()
            debugger.addImg(img)
            debugger.addPoint2D(pred[0], (255, 0, 0))
            debugger.addPoint2D(gt[0], (0, 0, 255))
            debugger.showAllImg(pause=True)

        loss = DiscoLoss(output, samples, target_var, criterion)

        Loss.update(loss.item(), input.size(0))
        Acc.update(
            Accuracy((pred_sample.data).cpu().numpy(),
                     (target.data).cpu().numpy()))
        if split == 'train':
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
        else:
            input_ = input.cpu().numpy()
            input_[0] = Flip(input_[0]).copy()
            inputFlip_var = torch.autograd.Variable(
                torch.from_numpy(input_).view(1, input_.shape[1], ref.inputRes,
                                              ref.inputRes)).float().cuda(
                                                  opt.GPU)
            _, samplesFlip = model(inputFlip_var, z, action)
            pred_sample_flip = maximumExpectedUtility(samplesFlip, criterion)
            outputFlip = ShuffleLR(
                Flip((pred_sample_flip.data).cpu().numpy()[0])).reshape(
                    1, ref.nJoints, ref.outputRes, ref.outputRes)
            output_ = old_div(((pred_sample.data).cpu().numpy() + outputFlip),
                              2)
            preds.append(
                finalPreds(output_, meta['center'], meta['scale'],
                           meta['rotate'])[0])

        Bar.suffix = '{split} Epoch: [{0}][{1}/{2}]| Total: {total:} | ETA: {eta:} | Loss {loss.avg:.6f} | Acc {Acc.avg:.6f} ({Acc.val:.6f})'.format(
            epoch,
            i,
            nIters,
            total=bar.elapsed_td,
            eta=bar.eta_td,
            loss=Loss,
            Acc=Acc,
            split=split)
        bar.next()

    bar.finish()
    return {'Loss': Loss.avg, 'Acc': Acc.avg}, preds
示例#13
0
def step(split, epoch, opt, dataLoader, model, criterion, optimizer=None):
    if split == 'train':
        model.train()
    else:
        model.eval()
    Loss, Acc, Mpjpe, Loss3D = AverageMeter(), AverageMeter(), AverageMeter(
    ), AverageMeter()

    nIters = len(dataLoader)
    bar = Bar('==>', max=nIters)

    for i, (input, target2D, target3D, meta) in enumerate(dataLoader):
        input_var = torch.autograd.Variable(input).float().cuda()
        target2D_var = torch.autograd.Variable(target2D).float().cuda()
        target3D_var = torch.autograd.Variable(target3D).float().cuda()

        output = model(input_var)
        reg = output[opt.nStack]
        if opt.DEBUG >= 2:
            gt = getPreds(target2D.cpu().numpy()) * 4
            pred = getPreds((output[opt.nStack - 1].data).cpu().numpy()) * 4
            debugger = Debugger()
            debugger.addImg(
                (input[0].numpy().transpose(1, 2, 0) * 256).astype(np.uint8))
            debugger.addPoint2D(pred[0], (255, 0, 0))
            debugger.addPoint2D(gt[0], (0, 0, 255))
            debugger.showImg()
            debugger.saveImg('debug/{}.png'.format(i))

        # FusioCriterion is an Autograd funciton which can be called only once in the forward pass. So it is defined again in every iteration.
        # Don't ask why.
        loss = FusionCriterion(opt.regWeight, opt.varWeight)(reg, target3D_var)

        Loss3D.update(loss.data[0], input.size(0))
        for k in range(opt.nStack):
            loss += criterion(output[k], target2D_var)

        Loss.update(loss.data[0], input.size(0))
        Acc.update(
            Accuracy((output[opt.nStack - 1].data).cpu().numpy(),
                     (target2D_var.data).cpu().numpy()))
        mpjpe, num3D = MPJPE((output[opt.nStack - 1].data).cpu().numpy(),
                             (reg.data).cpu().numpy(), meta)
        if num3D > 0:
            Mpjpe.update(mpjpe, num3D)
        if split == 'train':
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

        Bar.suffix = '{split} Epoch: [{0}][{1}/{2}]| Total: {total:} | ETA: {eta:} | Loss {loss.avg:.6f} | Loss3D {loss3d.avg:.6f} | Acc {Acc.avg:.6f} | Mpjpe {Mpjpe.avg:.6f} ({Mpjpe.val:.6f})'.format(
            epoch,
            i,
            nIters,
            total=bar.elapsed_td,
            eta=bar.eta_td,
            loss=Loss,
            Acc=Acc,
            split=split,
            Mpjpe=Mpjpe,
            loss3d=Loss3D)
        bar.next()

    bar.finish()
    return Loss.avg, Acc.avg, Mpjpe.avg, Loss3D.avg
示例#14
0
文件: demo.py 项目: wecacuee/StarMap
def main():
    opt = opts().parse()
    model = torch.load(opt.loadModel)
    img = cv2.imread(opt.demo)
    s = max(img.shape[0], img.shape[1]) * 1.0
    c = np.array([img.shape[1] / 2., img.shape[0] / 2.])
    img = Crop(img, c, s, 0, ref.inputRes) / 256.
    input = torch.from_numpy(img.copy()).float()
    input = input.view(1, input.size(0), input.size(1), input.size(2))
    input_var = torch.autograd.Variable(input).float()
    if opt.GPU > -1:
        model = model.cuda(opt.GPU)
        input_var = input_var.cuda(opt.GPU)

    output = model(input_var)
    hm = output[-1].data.cpu().numpy()

    debugger = Debugger()
    img = (input[0].numpy().transpose(1, 2, 0) * 256).astype(np.uint8).copy()
    inp = img.copy()
    star = (cv2.resize(hm[0, 0], (ref.inputRes, ref.inputRes)) * 255)
    star[star > 255] = 255
    star[star < 0] = 0
    star = np.tile(star, (3, 1, 1)).transpose(1, 2, 0)
    trans = 0.8
    star = (trans * star + (1. - trans) * img).astype(np.uint8)

    ps = parseHeatmap(hm[0], thresh=0.1)
    canonical, pred, color, score = [], [], [], []
    for k in range(len(ps[0])):
        x, y, z = ((hm[0, 1:4, ps[0][k], ps[1][k]] + 0.5) *
                   ref.outputRes).astype(np.int32)
        dep = ((hm[0, 4, ps[0][k], ps[1][k]] + 0.5) * ref.outputRes).astype(
            np.int32)
        canonical.append([x, y, z])
        pred.append([ps[1][k], ref.outputRes - dep, ref.outputRes - ps[0][k]])
        score.append(hm[0, 0, ps[0][k], ps[1][k]])
        color.append((1.0 * x / ref.outputRes, 1.0 * y / ref.outputRes,
                      1.0 * z / ref.outputRes))
        cv2.circle(img, (ps[1][k] * 4, ps[0][k] * 4), 4, (255, 255, 255), -1)
        cv2.circle(img, (ps[1][k] * 4, ps[0][k] * 4), 2,
                   (int(z * 4), int(y * 4), int(x * 4)), -1)

    pred = np.array(pred).astype(np.float32)
    canonical = np.array(canonical).astype(np.float32)

    pointS = canonical * 1.0 / ref.outputRes
    pointT = pred * 1.0 / ref.outputRes
    R, t, s = horn87(pointS.transpose(), pointT.transpose(), score)

    rotated_pred = s * np.dot(
        R, canonical.transpose()).transpose() + t * ref.outputRes

    debugger.addImg(inp, 'inp')
    debugger.addImg(star, 'star')
    debugger.addImg(img, 'nms')
    debugger.addPoint3D(canonical / ref.outputRes - 0.5, c=color, marker='^')
    debugger.addPoint3D(pred / ref.outputRes - 0.5, c=color, marker='x')
    debugger.addPoint3D(rotated_pred / ref.outputRes - 0.5,
                        c=color,
                        marker='*')

    debugger.showAllImg(pause=True)
    debugger.show3D()
示例#15
0
    bestR = angle2dcm(pred)

    R_gt = angle2dcm(gt_view)
    err_ = ((logm(np.dot(np.transpose(bestR), R_gt))**
             2).sum())**0.5 / (2.**0.5) * 180 / PI

    num[class_name] += 1
    acc[class_name] += 1 if err_ <= 30. else 0
    err[class_name].append(err_)

    if DEBUG:
        input, target, mask, view = dataset[index]
        debugger = Debugger()
        img = (input[:3].transpose(1, 2, 0) * 256).astype(np.uint8).copy()
        debugger.addImg(img)
        debugger.showAllImg(pause=False)

accAll = 0.
numAll = 0.
mid = {}
err_all = []
for k, v in ref.pascalClassName.items():
    accAll += acc[v]
    numAll += num[v]
    acc[v] = 1.0 * acc[v] / num[v]
    mid[v] = np.sort(np.array(err[v]))[len(err[v]) // 2]
    err_all = err_all + err[v]
print('Acc', acc)
print('num', num)
print('mid', mid)
示例#16
0
def step(split, epoch, opt, dataLoader, model, criterion, optimizer=None):
    if split == 'train':
        model.train()
    else:
        model.eval()
    Loss, Acc = AverageMeter(), AverageMeter()
    preds = []

    nIters = len(dataLoader)
    bar = Bar('{}'.format(opt.expID), max=nIters)

    for i, (input, target, target2, meta) in enumerate(dataLoader):
        input_var = torch.autograd.Variable(input).float().cuda()
        target_var = torch.autograd.Variable(target).float().cuda()
        target_var2 = torch.autograd.Variable(target2).float().cuda()
        #print( input_var)
        output = model(input_var)
        #print(output[-1].size())
        if opt.DEBUG >= 2:
            gt = getPreds(target.cpu().numpy()) * 4
            pred = getPreds((output[opt.nStack - 1].data).cpu().numpy()) * 4
            debugger = Debugger()
            img = (input[0].numpy().transpose(1, 2, 0) * 256).astype(
                np.uint8).copy()
            debugger.addImg(img)
            debugger.addPoint2D(pred[0], (255, 0, 0))
            debugger.addPoint2D(gt[0], (0, 0, 255))
            debugger.showAllImg(pause=True)

        loss = criterion(output[0], target_var)
        for k in range(1, opt.nStack):
            loss += criterion(output[k], target_var)
        Loss.update(loss.data[0], input.size(0))
        Acc.update(
            Accuracy((output[opt.nStack - 1].data).cpu().numpy(),
                     (target_var.data).cpu().numpy()))
        if split == 'train':
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
        else:
            input_ = input.cpu().numpy()
            input_[0] = Flip(input_[0]).copy()
            inputFlip_var = torch.autograd.Variable(
                torch.from_numpy(input_).view(1, input_.shape[1], ref.inputRes,
                                              ref.inputRes)).float().cuda(
                                                  opt.GPU)
            outputFlip = model(inputFlip_var)
            outputFlip = ShuffleLR(
                Flip((outputFlip[opt.nStack -
                                 1].data).cpu().numpy()[0])).reshape(
                                     1, ref.nJoints, 64, 64)
            output_ = (
                (output[opt.nStack - 1].data).cpu().numpy() + outputFlip) / 2
            preds.append(
                finalPreds(output_, meta['center'], meta['scale'],
                           meta['rotate'])[0])

        Bar.suffix = '{split} Epoch: [{0}][{1}/{2}]| Total: {total:} | ETA: {eta:} | Loss {loss.avg:.6f} | Acc {Acc.avg:.6f} ({Acc.val:.6f})'.format(
            epoch,
            i,
            nIters,
            total=bar.elapsed_td,
            eta=bar.eta_td,
            loss=Loss,
            Acc=Acc,
            split=split)
        bar.next()

    bar.finish()
    return {'Loss': Loss.avg, 'Acc': Acc.avg}, preds
def step(split, epoch, opt, dataLoader, model, criterion, optimizer=None):
    if split == 'train':
        model.train()
    else:
        model.eval()
    preds = []
    Loss, LossStar = AverageMeter(), AverageMeter()

    nIters = len(dataLoader)
    bar = Bar('{}'.format(opt.expID), max=nIters)

    for i, (input, target, mask) in enumerate(dataLoader):
        if mask.size(1) > 1:
            mask[:, 1:, :, :] *= ref.outputRes * (opt.regWeight**0.5)
        if opt.GPU > -1:
            input_var = torch.autograd.Variable(input.cuda(
                opt.GPU, async=True)).float().cuda(opt.GPU)
            target_var = torch.autograd.Variable(
                target.cuda(opt.GPU, async=True)).float().cuda(opt.GPU)
            mask_var = torch.autograd.Variable(mask.cuda(
                opt.GPU, async=True)).float().cuda(opt.GPU)
        else:
            input_var = torch.autograd.Variable(input).float()
            target_var = torch.autograd.Variable(target).float()
            mask_var = torch.autograd.Variable(mask).float()
        output = model(input_var)

        output_pred = output[opt.nStack - 1].data.cpu().numpy().copy()
        for k in range(opt.nStack):
            output[k] = mask_var * output[k]
        target_var = mask_var * target_var

        loss = 0
        for k in range(opt.nStack):
            loss += criterion(output[k], target_var)

        LossStar.update((
            (target.float()[:, 0, :, :] -
             output[opt.nStack - 1].cpu().data.float()[:, 0, :, :])**2).mean())
        Loss.update(loss.data[0], input.size(0))

        if split == 'train':
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
        else:
            if opt.test:
                out = {}
                input_ = input.cpu().numpy()
                input_[0] = Flip(input_[0]).copy()
                inputFlip_var = torch.autograd.Variable(
                    torch.from_numpy(input_).view(
                        1, input_.shape[1], ref.inputRes,
                        ref.inputRes)).float().cuda(opt.GPU)
                outputFlip = model(inputFlip_var)
                output_flip = outputFlip[opt.nStack - 1].data.cpu().numpy()
                output_flip[0] = Flip(output_flip[0])
                if not (opt.task == 'star'):
                    output_flip[0, 1, :, :] = -output_flip[0, 1, :, :]
                output_pred = (output_pred + output_flip) / 2.0
                out['map'] = output_pred
                preds.append(out)

        Bar.suffix = '{split:5} Epoch: [{0}][{1}/{2}]| Total: {total:} | ETA: {eta:} | Loss {loss.avg:.6f} | LossStar {lossStar.avg:.6f}'.format(
            epoch,
            i,
            nIters,
            total=bar.elapsed_td,
            eta=bar.eta_td,
            loss=Loss,
            lossStar=LossStar,
            split=split)
        bar.next()

        if opt.DEBUG > 1 or (opt.DEBUG == 1 and i % (nIters / 200) == 0):
            for j in range(input.size(0)):
                debugger = Debugger()
                img = (input[j].numpy()[:3].transpose(1, 2, 0) * 256).astype(
                    np.uint8).copy()
                img2 = img.copy().astype(np.float32)
                img3 = img.copy().astype(np.float32)
                imgMNS = img.copy()
                out = (cv2.resize(
                    ((output[opt.nStack - 1][j, 0].data).cpu().numpy()).copy(),
                    (ref.inputRes, ref.inputRes)) * 256)
                gtmap = (cv2.resize((target[j, 0].cpu().numpy()).copy(),
                                    (ref.inputRes, ref.inputRes)) * 256)
                out[out < 0] = 0
                out[out > 255] = 255
                img2[:, :, 0] = (img2[:, :, 0] + out)
                img2[img2 > 255] = 255
                img3[:, :, 2] = (img3[:, :, 2] + gtmap)
                img3[img3 > 255] = 255
                gtmap[gtmap > 255] = 255
                idx = i * input.size(0) + j if opt.DEBUG == 1 else 0
                img2, out, gtmap, img3 = img2.astype(np.uint8), out.astype(
                    np.uint8), gtmap.astype(np.uint8), img3.astype(np.uint8)

                if 'emb' in opt.task:
                    gt, pred = [], []
                    ps = parseHeatmap(target[j].numpy())
                    print('ps', ps)
                    for k in range(len(ps[0])):
                        print('target', k, target[j, 1:4, ps[0][k],
                                                  ps[1][k]].numpy())
                        x, y, z = (
                            (target[j, 1:4, ps[0][k], ps[1][k]].numpy() + 0.5)
                            * 255).astype(np.int32)
                        gt.append(target[j, 1:4, ps[0][k], ps[1][k]].numpy())
                        cv2.circle(imgMNS, (ps[1][k] * 4, ps[0][k] * 4), 6,
                                   (int(x), int(y), int(z)), -1)

                    ps = parseHeatmap(output_pred[j])
                    for k in range(len(ps[0])):
                        print('pred', k, output_pred[j, 1:4, ps[0][k],
                                                     ps[1][k]])
                        x, y, z = (
                            (output_pred[j, 1:4, ps[0][k], ps[1][k]] + 0.5) *
                            255).astype(np.int32)
                        pred.append(output_pred[j, 1:4, ps[0][k], ps[1][k]])
                        cv2.circle(imgMNS, (ps[1][k] * 4, ps[0][k] * 4), 4,
                                   (255, 255, 255), -1)
                        cv2.circle(imgMNS, (ps[1][k] * 4, ps[0][k] * 4), 2,
                                   (int(x), int(y), int(z)), -1)
                    debugger.addPoint3D(np.array(gt), c='auto', marker='o')
                    #debugger.addPoint3D(np.array(pred), c = 'auto', marker = 'x')
                debugger.addImg(imgMNS, '{}_mns'.format(idx))
                debugger.addImg(out, '{}_out'.format(idx))
                debugger.addImg(gtmap, '{}_gt'.format(idx))
                debugger.addImg(img, '{}_img'.format(idx))
                debugger.addImg(img2, '{}_img2'.format(idx))
                debugger.addImg(img3, '{}_img3'.format(idx))
                if opt.DEBUG == 1:
                    debugger.saveAllImg(path=opt.debugPath)
                else:
                    debugger.showAllImg(pause=not ('emb' in opt.task))
                if 'emb' in opt.task:
                    debugger.show3D()

    bar.finish()
    return {'Loss': Loss.avg, 'LossStar': LossStar.avg}, preds