示例#1
0
    def _print_verbose1(self,
                        epoch,
                        fd,
                        sess,
                        acc_train,
                        acc_test,
                        avg_var=None):
        am_test, alv_test, a_test = self._sample_a(self.x_test, 1)
        am_train, alv_train, a_train = self._sample_a(self.x_train, 1)
        zm_test, zlv_test, z_test = self._sample_Z(self.x_test, self.y_test,
                                                   a_test, 1)
        zm_train, zlv_train, z_train = self._sample_Z(self.x_train,
                                                      self.y_train, a_train, 1)
        lpx_test, lpx_train, klz_test, klz_train = sess.run([
            self._compute_logpx(self.x_test, z_test, self.y_test),
            self._compute_logpx(self.x_train, z_train, self.y_train),
            dgm._gauss_kl(zm_test, tf.exp(zlv_test)),
            dgm._gauss_kl(zm_train, tf.exp(zlv_train))
        ],
                                                            feed_dict=fd)

        print(
            'Epoch: {}, logpx: {:5.3f}, klz: {:5.3f}, Train: {:5.3f}, Test: {:5.3f}'
            .format(epoch, np.mean(lpx_train), np.mean(klz_train), acc_train,
                    acc_test))
示例#2
0
    def _compute_ELBO(self, x):
    	z_mean, z_log_var, z = self._sample_Z(x)
    	KLz = dgm._gauss_kl(z_mean, z_log_var)
	l_qz = dgm._gauss_logp(z, z_mean, z_log_var)
	l_pz = dgm._gauss_logp(z, tf.zeros_like(z), tf.ones_like(z)) 
    	l_px = self._compute_logpx(x, z)
	total_elbo = l_px - self.beta * (KLz) 
        return tf.reduce_mean(total_elbo), tf.reduce_mean(l_px), tf.reduce_mean(KLz)
示例#3
0
 def _labeled_loss(self, x, y):
     """ Compute necessary terms for labeled loss (per data point) """
     q_mean, q_log_var, z = self._sample_Z(x, y, self.Z_SAMPLES)
     l_px = self._compute_logpx(x, z)
     l_py = self._compute_logpy(y, x, z)
     l_pz = dgm._gauss_logp(z, tf.zeros_like(z), tf.log(tf.ones_like(z)))
     l_qz = dgm._gauss_logp(z, q_mean, q_log_var)
     klz = dgm._gauss_kl(q_mean, q_log_var)
     return l_px + l_py + self.beta * (l_pz - l_qz)
示例#4
0
 def _print_verbose1(self, epoch, fd, sess):
     self.phase = False
     zm_test, zlv_test, z_test = self._sample_Z(self.x_test, self.y_test, 1)
     zm_train, zlv_train, z_train = self._sample_Z(self.x_train,
                                                   self.y_train, 1)
     lpx_test, lpx_train, klz_test, klz_train, acc_train, acc_test = sess.run(
         [
             self._compute_logpx(self.x_test, z_test, self.y_test),
             self._compute_logpx(self.x_train, z_train, self.y_train),
             dgm._gauss_kl(zm_test, tf.exp(zlv_test)),
             dgm._gauss_kl(zm_train, tf.exp(zlv_train)), self.train_acc,
             self.test_acc
         ],
         feed_dict=fd)
     print(
         'Epoch: {}, logpx: {:5.3f}, klz: {:5.3f}, Train: {:5.3f}, Test: {:5.3f}'
         .format(epoch, np.mean(lpx_train), np.mean(klz_train), acc_train,
                 acc_test))
示例#5
0
 def _kl_W(self):
     kl = 0
     for i in range(len(self.NUM_HIDDEN)):
         mean, logvar = self.Pzx_y['W' + str(i) +
                                   '_mean'], self.Pzx_y['W' + str(i) +
                                                        '_logvar']
         kl += tf.reduce_sum(dgm._gauss_kl(mean, logvar))
         mean, logvar = self.Pzx_y['b' + str(i) +
                                   '_mean'], self.Pzx_y['b' + str(i) +
                                                        '_logvar']
         kl += tf.reduce_sum(
             dgm._gauss_kl(tf.expand_dims(mean, 1),
                           tf.expand_dims(logvar, 1)))
     mean, logvar = self.Pzx_y['Wout_mean'], self.Pzx_y['Wout_logvar']
     kl += tf.reduce_sum(dgm._gauss_kl(mean, logvar))
     mean, logvar = self.Pzx_y['bout_mean'], self.Pzx_y['bout_logvar']
     kl += tf.reduce_sum(
         dgm._gauss_kl(tf.expand_dims(mean, 1), tf.expand_dims(logvar, 1)))
     return kl
示例#6
0
 def _labeled_loss_W(self, x, y):
     """ Compute necessary terms for labeled loss (per data point) """
     d = tf.cast(self.TRAINING_SIZE, tf.float32)
     q_mean, q_logvar, z = self._sample_Z(x, y, self.Z_SAMPLES)
     l_px = self._compute_logpx(x, z)
     l_py = self._compute_logpy(y, x, z)
     l_pz = dgm._gauss_logp(z, tf.zeros_like(z), tf.log(tf.ones_like(z)))
     l_qz = dgm._gauss_logp(z, q_mean, q_logvar)
     klz = dgm._gauss_kl(q_mean, q_logvar)
     klw = self._kl_W() / d
     return l_px + l_py + self.beta * (l_pz - l_qz) - klw