def setOutFile(self): if '\\' in self.__currentdataset__: datasetName = self.__currentdataset__.split("\\")[-1].split('-')[0] else: datasetName = self.__currentdataset__.split("/")[-1].split('-')[0] fpath = os.path.join(self.__root__, 'a_s' + Configs.version) fpath = os.path.join(fpath, 'a_Column') check_folder(fpath) self.__currentoutfile__ = os.path.join(fpath, datasetName) del_dir_tree(self.__currentoutfile__)
def save_prediction_valid(self, prediction): filepath = os.path.join(self.root_path, "_cache_", "_cache_prediction_valid", self.dataname, self.classifier_name, self.getfilename()) if not os.path.exists(filepath): dirtools.check_folder( os.path.join(self.root_path, "_cache_", "_cache_prediction_valid", self.dataname, self.classifier_name)) with open(filepath, 'w') as f: # open file with write-mode pickle.dump(prediction, f) # serialize and save object
def save_estimator_test(self, estimator): filepath = os.path.join(self.root_path, "_cache_", "_cache_classifier_test", self.dataname, self.classifier_name, self.getfilename()) if not os.path.exists(filepath): dirtools.check_folder( os.path.join(self.root_path, "_cache_", "_cache_classifier_test", self.dataname, self.classifier_name)) with open(filepath, 'w') as f: # open file with write-mode pickle.dump(estimator, f) # serialize and save object
def logMiddle(genid, fitness, filename): filedir = gol.get_val("root_path") filedir = os.path.join(filedir, 'Results/' + gol.get_val("version")) filedir = os.path.join(filedir, gol.get_val("dataName")+"-v"+gol.get_val("version")) filedir = os.path.join(filedir, gol.get_val("aimFolder")) check_folder(filedir) filedir = os.path.join(filedir, filename) f = file(filedir, 'a') i = genid+1 f.write(str(i)) f.write(":") f.write('\n') f.write("fitness:") f.write(str(fitness)) f.write('\n') f.write('\n') f.close()
def logPopulations( genid, pop): filedir = gol.get_val("root_path") filedir = os.path.join(filedir, 'Results/' + gol.get_val("version")) filedir = os.path.join(filedir, gol.get_val("dataName")+"-v"+gol.get_val("version")) filedir = os.path.join(filedir, gol.get_val("aimFolder")) check_folder(filedir) filedir = os.path.join(filedir, "Gen."+str(genid)+".gpecoc") f = file(filedir, 'w+') i = 1 for ind in pop: Matrix , feature_list = getMatrixDirectly_and_feature(ind) feature_method_index = gol.get_val("feature_method_index") feature_index_list = list( feature_method_index[method] for method in feature_list) Matrix = np.ndarray.tolist(Matrix) Matrix.insert(0,feature_index_list) Matrix = np.array(Matrix) f.write(str(i)) f.write(":") f.write('\n') f.write(str(Matrix)) f.write('\n') f.write("f-score:") f.write(str(ind.fscore)) f.write('\n') f.write("accuracy:") f.write(str(ind.accuracy)) f.write('\n') f.write('--------------------------------------------------------------------------------------------\n') for text in ind.infos_evaluation: f.write(str(text)) f.write('\n') f.write('\n\n\n\n\n') i=i+1 f.close()
def _agp_main_runner(dataName, aimFolder): std = sys.stdout try: Configs.dataName = dataName Configs.aimFolder = aimFolder _rootp = Configs.root_path _rootp = os.path.join(_rootp, 'Results/' + Configs.version) _rootp = os.path.join(_rootp, Configs.dataName + "-v" + Configs.version) _rootp = os.path.join(_rootp, Configs.aimFolder) del_dir_tree(_rootp) # delete former results check_folder(_rootp) _res = "/Result" out = open(_rootp + _res, 'w+') sys.stdout = out sys.stderr = out AGpEcocStart.main_run() except Exception as e: _err = "/Error" err = open(_rootp + _err, 'w+') err.write(e.message) err.flush() finally: sys.stdout = std