def add_placeholders_op(self): """ Adds placeholders to the graph These placeholders are used as inputs by the rest of the model building and will be fed data during training. """ # here, typically, a state shape is (5,3,22) state_shape = list([ self.env.args.visible_radius_unit_front + 1, 2 * self.env.args.visible_radius_unit_side + 1, len(self.env.state.xmap.item_class_id) + 1 ]) self.s = tf.placeholder(tf.bool, shape=(None, None, state_shape[0], state_shape[1], state_shape[2])) self.hs = DNC.state_placeholder(self.config) self.slen = tf.placeholder(tf.int32, shape=(None)) self.sp = tf.placeholder(tf.bool, shape=(None, None, state_shape[0], state_shape[1], state_shape[2])) self.hsp = DNC.state_placeholder(self.config) self.splen = tf.placeholder(tf.int32, shape=(None)) self.a = tf.placeholder(tf.int32, shape=(None)) # (nb*state_history,) self.past_a = tf.placeholder(tf.int32, shape=(None)) # (nb*state_history,) self.r = tf.placeholder(tf.float32, shape=(None)) # (nb*state_history,) self.done_mask = tf.placeholder(tf.bool, shape=(None)) # (nb*state_history,) self.seq_mask = tf.placeholder(tf.bool, shape=(None)) # (nb*state_history,) self.lr = tf.placeholder(tf.float32, shape=(None))
def add_placeholders_op(self): """ Adds placeholders to the graph These placeholders are used as inputs by the rest of the model building and will be fed data during training. """ # here, typically, a state shape is (2*4*3+2) num_classes = len(self.env.state.xmap.item_class_id) ndigits = self.config.ndigits nway = self.config.nway self.s = tf.placeholder(tf.float32, shape=(None, None, 2*(num_classes-1)*ndigits*nway+2)) self.hs = DNC.state_placeholder(self.config) self.slen = tf.placeholder(tf.int32, shape=(None)) self.pred_flag = tf.placeholder(tf.float32, shape=(None, None)) # (nb, state_history) self.target_action = tf.placeholder(tf.float32, shape=(None, None, 2*(num_classes-1)*ndigits*nway)) # (nb, state_history, num_actions) self.lr = tf.placeholder(tf.float32, shape=(None))