def look_for_checkpoints(folder, task): dirs = [f for f in listdir(folder) if isdir(join(folder, f))] for d in dirs: # print(join(folder, d)) if d == task or (d in ['kp', 'ori', 'desc', 'joint'] and task == 'all'): cp = tf.train.latest_checkpoint(join(folder, d)) if cp is not None: # Load best validation result r = loadh5(join(folder, d, 'best_val_loss.h5'))[d] s = loadh5(join(folder, d, 'step.h5'))[d] print('{0:s} -> {1:.05f} [{2:d}]'.format( join(folder, d), r, s)) else: look_for_checkpoints(join(folder, d), task)
lift_dir = v_des_dir else: print('Error: There is something wrong with the scene name: %s'%scene_name) exit(1) elif cst.DATA=='hpatches_rot' or cst.DATA=='hpatches_s': lift_dir = v_des_dir img0_fn = os.path.join(cst.DATA_DIR, scene_name,'%d.ppm'%1) print('img_fn: %s'%img0_fn) img0 = cv2.imread(img0_fn) old_size0 = (img0.shape[1], img0.shape[0]) if args.resize==1: img0 = cv2.resize(img0, new_size, interpolation=cv2.INTER_LINEAR) lift_out0_fn = os.path.join(lift_dir, scene_name, '%d.h5'%1) lift_out0 = loadh5(lift_out0_fn) # detection and description kp0 = [] for line in lift_out0['keypoints'][:args.max_num_feat,:]: kp = cv2.KeyPoint(x=line[0],y=line[1], _size=2, _angle=0, _response=0, _octave=0, _class_id=0) kp0.append(kp) des0 = lift_out0['descriptors'][:args.max_num_feat,:] # draw kp on img kp_on_img0 = cv2.cvtColor(img0, cv2.COLOR_BGR2GRAY) kp_on_img0 = np.tile(np.expand_dims(kp_on_img0,2), (1,1,3)) for i,kp in enumerate(kp0): pt = (int(round(kp.pt[0])), int(round(kp.pt[1]))) cv2.circle(kp_on_img0, pt, 1, (0, 255, 0), -1, lineType=16)
img_dir = os.path.join(cst.DATA_DIR, scene_name, 'test/image_color') img_list = os.listdir(img_dir) # get 1st img, (resize it), convert to BW img0_fn = os.path.join(cst.DATA_DIR, scene_name, 'test/image_color/', img_list[0]) root_fn = img_list[0].split(".")[0] #print('img_fn: %s'%img0_fn) img0 = cv2.imread(img0_fn) old_size0 = (img0.shape[1], img0.shape[0]) if args.resize == 1: img0 = cv2.resize(img0, new_size, interpolation=cv2.INTER_LINEAR) # raw sift on img 1 lift_out_fn = os.path.join(lift_dir, scene_name, root_fn + '.h5') lift_out = loadh5(lift_out_fn) kp0 = [] for line in lift_out['keypoints'][:args.max_num_feat, :]: kp = cv2.KeyPoint(x=line[0], y=line[1], _size=2, _angle=0, _response=0, _octave=0, _class_id=0) kp0.append(kp) des0 = lift_out['descriptors'][:args.max_num_feat, :] print(des0.shape) kp_on_img0 = cv2.cvtColor(img0, cv2.COLOR_BGR2GRAY) kp_on_img0 = np.tile(np.expand_dims(kp_on_img0, 2), (1, 1, 3))