print(f'dataset size: {len(dataset)}') model = model_fn(dataset) if use_half: model = model.half() for partial_path in args.partial: model.load_state_dict(torch.load(partial_path), strict=False) optimiser = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay) paths = env.Paths(model_name, data_path) if args.scratch or args.load == None and not os.path.exists( paths.model_path()): # Start from scratch step = 0 epoch = 0 else: if args.load: #remove .pyt extension and step number prev_model_name = re.sub( r'_[0-9]+$', '', re.sub(r'\.pyt$', '', os.path.basename(args.load))) prev_model_basename = prev_model_name.split('_')[0] model_basename = model_name.split('_')[0] if prev_model_basename != model_basename and not args.force:
else: raise RuntimeError('bad dataset type') print(f'dataset size: {len(dataset)}') model = model_fn(dataset) if use_half: model = model.half() for partial_path in args.partial: model.load_state_dict(torch.load(partial_path), strict=False) optimiser = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay) paths = env.Paths(model_name, data_path, args.results_dir, args.exp_name) if args.scratch or args.load == None and not os.path.exists(paths.model_path()): # Start from scratch step = 0 epoch = 0 print("Start from Scratch.") else: if args.load: prev_model_name = re.sub(r'_[0-9]+$', '', re.sub(r'\.pyt$', '', os.path.basename(args.load))) prev_model_basename = prev_model_name.split('_')[0] model_basename = model_name.split('_')[0] if prev_model_basename != model_basename and not args.force: sys.exit(f'refusing to load {args.load} because its basename ({prev_model_basename}) is not {model_basename}') if args.generate: paths = env.Paths(prev_model_name, data_path, args.results_dir, args.exp_name)