示例#1
0
    def MC_evaluate(self, dataset='valid', train_step=None):
        num_batch = self.num_test_batch if dataset == 'test' else self.num_val_batch
        self.sess.run(tf.local_variables_initializer())

        y_pred = np.zeros((self.conf.monte_carlo_simulations,
                           self.conf.val_batch_size, self.conf.num_cls))
        mean_pred, var_pred = np.zeros_like(
            self.data_reader.y_test), np.zeros_like(self.data_reader.y_test[:,
                                                                            0])
        err = 0.

        for step in tqdm(range(num_batch)):
            start = self.conf.val_batch_size * step
            end = self.conf.val_batch_size * (step + 1)
            data_x, data_y = self.data_reader.next_batch(start=start,
                                                         end=end,
                                                         mode=dataset)
            feed_dict = {
                self.inputs_pl: data_x,
                self.labels_pl: data_y,
                self.keep_prob_pl: self.conf.keep_prob,
                self.is_train_pl: False
            }
            for sample_id in range(self.conf.monte_carlo_simulations):
                # save predictions from a sample pass
                y_pred[sample_id] = self.sess.run(self.y_prob,
                                                  feed_dict=feed_dict)

            # average and variance over all passes
            mean_pred[start:end] = y_pred.mean(axis=0)
            var_pred[start:end] = predictive_entropy(mean_pred[start:end])
            var_pred[start:end] = mutual_info(y_pred)

            # compute batch error
            err += np.count_nonzero(
                np.not_equal(mean_pred[start:end].argmax(axis=1),
                             data_y.argmax(axis=1)))

        accuracy = 1 - err / self.data_reader.y_test.shape[0]
        print('Test accuracy = {0:.02%}'.format(accuracy))
示例#2
0
            #     ST_SET = options.num_gan
            # np.savez_compressed(os.path.join(options.mc_dir,
            # 'output_{}_loos={}_mciter={}_GAN={}'.format(DROP, options.loos,
            #     mc_iter+1, ST_SET)), y=iter_targets, data=mc_probs)
            # print('Filename: ' + 'output_{}_loos={}_mciter={}_GAN={}.npz'.format(DROP, options.loos,
            #     mc_iter+1, ST_SET))
            # print('accuracy={0:.05%}'.format(acc))
        mc_probs = np.concatenate(mc_probs)  # [mc_iter, N, C]

        if options.GAN == 0:
            ST_SET = 0
        else:
            ST_SET = options.num_gan

        mean_prob = mc_probs.mean(axis=0)
        var_pred_entropy = predictive_entropy(mean_prob)
        var_pred_MI = mutual_info(mc_probs)
        np.savez_compressed(os.path.join(options.mc_dir, 'output_{}_loos={}_mc={}_GAN={}'.format(DROP,options.loos, options.mc_iter, ST_SET)),
                            y=iter_targets, data=mc_probs, names=names, subjects=subjects, file_names=file_names, unc=var_pred_entropy)

        print('Filename: ' + 'output_{}_loos={}_mciter={}_GAN={}.npz'.format(DROP, options.loos,
                                                                                  options.mc_iter, ST_SET))


        acc = 1 - np.count_nonzero(np.not_equal(mean_prob.argmax(axis=1), iter_targets.argmax(axis=1))) / mean_prob.shape[0]
        print('accuracy={0:.02%}'.format(acc))
        exit()
    else:
        test_outputs, test_targets, test_loss_ = evaluate()
        test_acc = compute_accuracy(torch.cat(test_targets), torch.cat(test_outputs))
        targets = torch.cat(test_targets).cpu().numpy()
示例#3
0
    #

    all_mc_acc = []
    for iter_num in range(100):
        mean_prob = mc_probs[0:iter_num + 1].mean(axis=0)
        all_mc_acc.append(1 - np.count_nonzero(
            np.not_equal(mean_prob.argmax(axis=1), y.argmax(axis=1))) /
                          mean_prob.shape[0])

    opt_iter = np.argmax(np.array(all_mc_acc))
    # get the values on T
    y_probs = mc_probs[:opt_iter]  # [opt_iter, N, C]
    mean_probs = y_probs.mean(axis=0)

    # compute uncertainties
    var_pred_entropy = predictive_entropy(mean_probs)  # [N, C]
    # var_pred_MI = mutual_info(y_probs)

    # normalize the uncertainty values
    y_var = normalize(var_pred_entropy)

    # plot subject level distributions
    unq_subs = np.unique(name)
    for sub in unq_subs:
        if sub not in done_subs:
            sub_idx = np.where(name == sub)
            sub_x = x[sub_idx]
            sub_y = y[sub_idx].argmax(axis=1)
            sub_y_pred = mean_probs[sub_idx].argmax(axis=1)
            sub_y_prob = np.squeeze(y_probs[:, sub_idx])
            sub_y_var = y_var[sub_idx]
    def MC_evaluate(self, dataset='valid', train_step=None):
        num_batch = self.num_test_batch if dataset == 'test' else self.num_val_batch
        hist = np.zeros((self.conf.num_cls, self.conf.num_cls))
        self.sess.run(tf.local_variables_initializer())
        all_inputs = np.zeros((0, self.conf.height, self.conf.width, self.conf.channel))
        all_mask = np.zeros((0, self.conf.height, self.conf.width))
        all_pred = np.zeros((0, self.conf.height, self.conf.width))
        all_var = np.zeros((0, self.conf.height, self.conf.width))
        cls_uncertainty = np.zeros((0, self.conf.height, self.conf.width, self.conf.num_cls))
        for step in tqdm(range(num_batch)):
            start = self.conf.val_batch_size * step
            end = self.conf.val_batch_size * (step + 1)
            data_x, data_y = self.data_reader.next_batch(start=start, end=end, mode=dataset)
            mask_pred_mc = [np.zeros((self.conf.val_batch_size, self.conf.height, self.conf.width))
                            for _ in range(self.conf.monte_carlo_simulations)]
            mask_prob_mc = [np.zeros((self.conf.val_batch_size, self.conf.height, self.conf.width, self.conf.num_cls))
                            for _ in range(self.conf.monte_carlo_simulations)]
            feed_dict = {self.inputs_pl: data_x,
                         self.labels_pl: data_y,
                         self.is_training_pl: True,
                         self.with_dropout_pl: True,
                         self.keep_prob_pl: self.conf.keep_prob}
            for mc_iter in range(self.conf.monte_carlo_simulations):
                inputs, mask, mask_prob, mask_pred = self.sess.run([self.inputs_pl,
                                                                    self.labels_pl,
                                                                    self.y_prob,
                                                                    self.y_pred], feed_dict=feed_dict)
                mask_prob_mc[mc_iter] = mask_prob
                mask_pred_mc[mc_iter] = mask_pred

            prob_mean = np.nanmean(mask_prob_mc, axis=0)
            prob_variance = np.var(mask_prob_mc, axis=0)
            pred = np.argmax(prob_mean, axis=-1)
            # var_one = np.nanmean(prob_variance, axis=-1)
            # var_one = var_calculate_2d(pred, prob_variance)
            var_one = predictive_entropy(prob_mean)
            # var_one = mutual_info(prob_mean, mask_prob_mc)
            hist += get_hist(pred.flatten(), mask.flatten(), num_cls=self.conf.num_cls)

            # if all_inputs.shape[0] < 6:
            # ii = np.random.randint(self.conf.val_batch_size)
            # ii = 1
            all_inputs = np.concatenate((all_inputs, inputs.reshape(-1, self.conf.height, self.conf.width,
                                                                    self.conf.channel)), axis=0)
            all_mask = np.concatenate((all_mask, mask.reshape(-1, self.conf.height, self.conf.width)), axis=0)
            all_pred = np.concatenate((all_pred, pred.reshape(-1, self.conf.height, self.conf.width)), axis=0)
            all_var = np.concatenate((all_var, var_one.reshape(-1, self.conf.height, self.conf.width)), axis=0)
            cls_uncertainty = np.concatenate((cls_uncertainty,
                                              prob_variance.reshape(-1, self.conf.height, self.conf.width,
                                                                    self.conf.num_cls)),
                                             axis=0)
            # else:
        self.visualize(all_inputs, all_mask, all_pred, all_var, cls_uncertainty, train_step=train_step,
                       mode='test')
        import h5py
        h5f = h5py.File('dropconnect_entropy_uncertainty.h5', 'w')
        h5f.create_dataset('x', data=all_inputs)
        h5f.create_dataset('y', data=all_mask)
        h5f.create_dataset('y_pred', data=all_pred)
        h5f.create_dataset('y_var', data=all_var)
        h5f.create_dataset('cls_uncertainty', data=cls_uncertainty)
        h5f.close()

        # h5f = h5py.File('dropout_pred_uncertainty.h5', 'r')
        # all_mask = h5f['y'][:]
        # all_pred = h5f['y_pred'][:]
        # all_var = h5f['y_var'][:]
        # h5f.close()
        # uncertainty_measure = get_uncertainty_precision(all_mask, all_pred, all_var)
        # print('Uncertainty Quality Measure = {}'.format(uncertainty_measure))
        # break
        IOU, ACC = compute_iou(hist)
        mean_IOU = np.mean(IOU)
        print('****** IoU & ACC ******')
        print('Mean IoU = {0:.01%}'.format(mean_IOU))
        for ii in range(self.conf.num_cls):
            print('     - {0} class: IoU={1:.01%}, ACC={2:.01%}'.format(self.conf.label_name[ii], IOU[ii], ACC[ii]))
        print('-' * 20)