def do_detect(configs, model, bevmap, is_front): if not is_front: bevmap = torch.flip(bevmap, [1, 2]) input_bev_maps = bevmap.unsqueeze(0).to(configs.device, non_blocking=True).float() t1 = time_synchronized() outputs = model(input_bev_maps) outputs['hm_cen'] = _sigmoid(outputs['hm_cen']) outputs['cen_offset'] = _sigmoid(outputs['cen_offset']) # detections size (batch_size, K, 10) detections = decode(outputs['hm_cen'], outputs['cen_offset'], outputs['direction'], outputs['z_coor'], outputs['dim'], K=configs.K) detections = detections.cpu().numpy().astype(np.float32) detections = post_processing(detections, configs.num_classes, configs.down_ratio, configs.peak_thresh) t2 = time_synchronized() # Inference speed fps = 1 / (t2 - t1) return detections[0], bevmap, fps
def complex_yolo(pointcloud): pointcloud = get_filtered_lidar(pointcloud, cnf.boundary) bev_maps = makeBEVMap(pointcloud, cnf.boundary) bev_maps = torch.from_numpy(bev_maps) bev_maps = torch.unsqueeze(bev_maps, 0) input_bev_maps = bev_maps.to(configs.device, non_blocking=True).float() t1 = time_synchronized() outputs = model(input_bev_maps) outputs['hm_cen'] = _sigmoid(outputs['hm_cen']) outputs['cen_offset'] = _sigmoid(outputs['cen_offset']) # detections size (batch_size, K, 10) detections = decode(outputs['hm_cen'], outputs['cen_offset'], outputs['direction'], outputs['z_coor'],outputs['dim'], K=configs.K) detections = detections.cpu().detach().numpy().astype(np.float32) detections = post_processing(detections, configs.num_classes, configs.down_ratio, configs.peak_thresh) t2 = time_synchronized() detections = detections[0] # only first batch # Draw prediction in the image bev_map = (bev_maps.squeeze().permute(1, 2, 0).numpy() * 255).astype(np.uint8) bev_map = cv2.resize(bev_map, (cnf.BEV_WIDTH, cnf.BEV_HEIGHT)) bev_map = draw_predictions(bev_map, detections.copy(), configs.num_classes) bev_map = cv2.rotate(bev_map, cv2.ROTATE_180) cv2.imshow("BEV", bev_map) print('\tDone testing in time: {:.1f}ms, speed {:.2f}FPS'.format((t2 - t1) * 1000,1 / (t2 - t1)))
def post_procesiing(self, outputs): outputs['hm_cen'] = _sigmoid(outputs['hm_cen']) outputs['cen_offset'] = _sigmoid(outputs['cen_offset']) # detections size (batch_size, K, 10) detections = decode(outputs['hm_cen'], outputs['cen_offset'], outputs['direction'], outputs['z_coor'],outputs['dim'], K=self.configs.K) detections = detections.cpu().detach().numpy().astype(np.float32) detections = post_processing(detections, self.configs.num_classes, self.configs.down_ratio, self.configs.peak_thresh) detections = detections[0] detections = convert_det_to_real_values(detections) return detections
def callback(self, data): rospy.loginfo("detection") with torch.no_grad(): gen = point_cloud2.read_points(data) #print(type(gen)) cloudata = [] for idx, p in enumerate(gen): data = np.array([p[0], p[1], p[2], p[3]]) data = data.reshape((1, 4)) cloudata.append(data) lidarData = np.concatenate([x for x in cloudata], axis=0) lidarData = get_filtered_lidar(lidarData, cnf.boundary) res = self.voxel_generator.generate(lidarData, 20000) coorinput = np.pad(res["coordinates"], ((0, 0), (1, 0)), mode='constant', constant_values=0) voxelinput = res["voxels"] numinput = res["num_points_per_voxel"] dtype = torch.float32 voxelinputr = torch.tensor(voxelinput, dtype=torch.float32, device=configs.device).to(dtype) coorinputr = torch.tensor(coorinput, dtype=torch.int32, device=configs.device) numinputr = torch.tensor(numinput, dtype=torch.int32, device=configs.device) outputs = self.model(voxelinputr, coorinputr, numinputr) outputs = outputs._asdict() outputs['hm_cen'] = _sigmoid(outputs['hm_cen']) outputs['cen_offset'] = _sigmoid(outputs['cen_offset']) # detections size (batch_size, K, 10) detections = decode(outputs['hm_cen'], outputs['cen_offset'], outputs['direction'], outputs['z_coor'], outputs['dim'], K=configs.K) detections = detections.cpu().numpy().astype(np.float32) detections = post_processing(detections, configs.num_classes, configs.down_ratio, configs.peak_thresh) detections = detections[0] bev_map = np.ones((432, 432, 3), dtype=np.uint8) bev_map = bev_map * 0.5 bev_map = makeBEVMap(lidarData, cnf.boundary) bev_map = bev_map.transpose((1, 2, 0)) * 255 #bev_map = (bev_maps.squeeze().permute(1, 2, 0).numpy() * 255).astype(np.uint8) bev_map = cv2.resize(bev_map, (cnf.BEV_WIDTH, cnf.BEV_HEIGHT)) bev_map = draw_predictions(bev_map, detections.copy(), configs.num_classes) # Rotate the bev_map bev_map = cv2.rotate(bev_map, cv2.ROTATE_180) out_img = bev_map cv2.imshow('test-img', out_img) cv2.waitKey(1)
model.eval() test_dataloader = create_test_dataloader(configs) with torch.no_grad(): for batch_idx, batch_data in enumerate(test_dataloader): metadatas, bev_maps, img_rgbs = batch_data input_bev_maps = bev_maps.to(configs.device, non_blocking=True).float() t1 = time_synchronized() outputs = model(input_bev_maps) outputs['hm_cen'] = _sigmoid(outputs['hm_cen']) outputs['cen_offset'] = _sigmoid(outputs['cen_offset']) # detections size (batch_size, K, 10) detections = decode(outputs['hm_cen'], outputs['cen_offset'], outputs['direction'], outputs['z_coor'], outputs['dim'], K=configs.K) detections = detections.cpu().numpy().astype(np.float32) detections = post_processing(detections, configs.num_classes, configs.down_ratio, configs.peak_thresh) t2 = time_synchronized() detections = detections[0] # only first batch # Draw prediction in the image bev_map = (bev_maps.squeeze().permute(1, 2, 0).numpy() * 255).astype(np.uint8) bev_map = cv2.resize(bev_map, (cnf.BEV_WIDTH, cnf.BEV_HEIGHT)) bev_map = draw_predictions(bev_map, detections.copy(), configs.num_classes)
def evaluate_mAP(val_loader, model, configs, logger): batch_time = AverageMeter('Time', ':6.3f') data_time = AverageMeter('Data', ':6.3f') progress = ProgressMeter(len(val_loader), [batch_time, data_time], prefix="Evaluation phase...") labels = [] sample_metrics = [] # List of tuples (TP, confs, pred) # switch to evaluate mode model.eval() with torch.no_grad(): start_time = time.time() for batch_idx, batch_data in enumerate(tqdm(val_loader)): metadatas, targets = batch_data batch_size = len(metadatas['img_path']) voxelinput = metadatas['voxels'] coorinput = metadatas['coors'] numinput = metadatas['num_points'] dtype = torch.float32 voxelinputr = torch.tensor(voxelinput, dtype=torch.float32, device=configs.device).to(dtype) coorinputr = torch.tensor(coorinput, dtype=torch.int32, device=configs.device) numinputr = torch.tensor(numinput, dtype=torch.int32, device=configs.device) t1 = time_synchronized() outputs = model(voxelinputr, coorinputr, numinputr) outputs = outputs._asdict() outputs['hm_cen'] = _sigmoid(outputs['hm_cen']) outputs['cen_offset'] = _sigmoid(outputs['cen_offset']) # detections size (batch_size, K, 10) detections = decode(outputs['hm_cen'], outputs['cen_offset'], outputs['direction'], outputs['z_coor'], outputs['dim'], K=configs.K) detections = detections.cpu().numpy().astype(np.float32) detections = post_processingv2(detections, configs.num_classes, configs.down_ratio, configs.peak_thresh) for sample_i in range(len(detections)): # print(output.shape) num = targets['count'][sample_i] # print(targets['batch'][sample_i][:num].shape) target = targets['batch'][sample_i][:num] #print(target[:, 8].tolist()) labels += target[:, 8].tolist() sample_metrics += get_batch_statistics_rotated_bbox( detections, targets, iou_threshold=configs.iou_thresh) t2 = time_synchronized() # measure elapsed time # torch.cuda.synchronize() batch_time.update(time.time() - start_time) # Log message if logger is not None: if ((batch_idx + 1) % configs.print_freq) == 0: logger.info(progress.get_message(batch_idx)) start_time = time.time() # Concatenate sample statistics true_positives, pred_scores, pred_labels = [ np.concatenate(x, 0) for x in list(zip(*sample_metrics)) ] precision, recall, AP, f1, ap_class = ap_per_class( true_positives, pred_scores, pred_labels, labels) return precision, recall, AP, f1, ap_class
def evaluate_mAP(val_loader, model, configs, logger): batch_time = AverageMeter('Time', ':6.3f') data_time = AverageMeter('Data', ':6.3f') progress = ProgressMeter(len(val_loader), [batch_time, data_time], prefix="Evaluation phase...") labels = [] sample_metrics = [] # List of tuples (TP, confs, pred) # switch to evaluate mode model.eval() class_id = {0:'Car', 1:'Pedestrian', 2:'Cyclist'} with torch.no_grad(): start_time = time.time() for batch_idx, batch_data in enumerate(tqdm(val_loader)): metadatas, targets= batch_data batch_size = len(metadatas['img_path']) voxelinput = metadatas['voxels'] coorinput = metadatas['coors'] numinput = metadatas['num_points'] dtype = torch.float32 voxelinputr = torch.tensor( voxelinput, dtype=torch.float32, device=configs.device).to(dtype) coorinputr = torch.tensor( coorinput, dtype=torch.int32, device=configs.device) numinputr = torch.tensor( numinput, dtype=torch.int32, device=configs.device) t1 = time_synchronized() outputs = model(voxelinputr, coorinputr, numinputr) outputs = outputs._asdict() outputs['hm_cen'] = _sigmoid(outputs['hm_cen']) outputs['cen_offset'] = _sigmoid(outputs['cen_offset']) # detections size (batch_size, K, 10) img_path = metadatas['img_path'][0] #print(img_path) calib = Calibration(img_path.replace(".png", ".txt").replace("image_2", "calib")) detections = decode(outputs['hm_cen'], outputs['cen_offset'], outputs['direction'], outputs['z_coor'], outputs['dim'], K=configs.K) detections = detections.cpu().numpy().astype(np.float32) detections = post_processing(detections, configs.num_classes, configs.down_ratio, configs.peak_thresh) for i in range(configs.batch_size): detections[i] = convert_det_to_real_values(detections[i]) img_path = metadatas['img_path'][i] #rint(img_path) datap = str.split(img_path,'/') filename = str.split(datap[7],'.') file_write_obj = open('../result/' + filename[0] + '.txt', 'w') lidar_path = '/' + datap[1] + '/' + datap[2] + '/' + datap[3] + '/' + \ datap[4] + '/' + datap[5] + '/' + 'velodyne' + '/' + filename[0] + '.bin' #print(lidar_path) #show3dlidar(lidar_path, detections[i], calib.V2C, calib.R0, calib.P2) dets = detections[i] if len(dets) >0 : dets[:, 1:] = lidar_to_camera_box(dets[:, 1:], calib.V2C, calib.R0, calib.P2) for box_idx, label in enumerate(dets): location, dim, ry = label[1:4], label[4:7], label[7] if ry < -np.pi: ry = 2*np.pi + ry if ry > np.pi: ry = -2*np.pi + ry corners_3d = compute_box_3d(dim, location, ry) corners_2d = project_to_image(corners_3d, calib.P2) minxy = np.min(corners_2d, axis=0) maxxy = np.max(corners_2d, axis=0) bbox = np.concatenate([minxy, maxxy], axis=0) if bbox[0] < 0 or bbox[2]<0: continue if bbox[1] > 1272 or bbox[3] > 375: continue oblist = ['Car',' ','0.0', ' ', '0', ' ', '-10', ' ','%.2f'%bbox[0], ' ', \ '%.2f' %bbox[1], ' ','%.2f'%bbox[2], ' ','%.2f'%bbox[3], ' ','%.2f'%dim[0], ' ','%.2f'%dim[1], ' ','%.2f'%dim[2], ' ', \ '%.2f' %location[0], ' ','%.2f'%location[1], ' ','%.2f'%location[2], ' ', '%.2f'%ry, '\n'] file_write_obj.writelines(oblist) file_write_obj.close() '''for sample_i in range(len(detections)):