def training_pipeline(self, **kwargs):
        training_steps = int(300000000)
        tf_steps = int(5e6)
        anneal_steps = int(5e6)
        il_no_tf_steps = training_steps - tf_steps - anneal_steps
        assert il_no_tf_steps > 0

        lr = 3e-4
        num_mini_batch = 2 if torch.cuda.is_available() else 1
        update_repeats = 4
        num_steps = 30
        save_interval = 5000000
        log_interval = 10000
        gamma = 0.99
        use_gae = True
        gae_lambda = 0.95
        max_grad_norm = 0.5
        return TrainingPipeline(
            save_interval=save_interval,
            metric_accumulate_interval=log_interval,
            optimizer_builder=Builder(optim.Adam, dict(lr=lr)),
            num_mini_batch=num_mini_batch,
            update_repeats=update_repeats,
            max_grad_norm=max_grad_norm,
            num_steps=num_steps,
            named_losses={
                "imitation_loss": Imitation(),
            },
            gamma=gamma,
            use_gae=use_gae,
            gae_lambda=gae_lambda,
            advance_scene_rollout_period=self.ADVANCE_SCENE_ROLLOUT_PERIOD,
            pipeline_stages=[
                PipelineStage(
                    loss_names=["imitation_loss"],
                    max_stage_steps=tf_steps,
                    teacher_forcing=LinearDecay(
                        startp=1.0,
                        endp=1.0,
                        steps=tf_steps,
                    ),
                ),
                PipelineStage(
                    loss_names=["imitation_loss"],
                    max_stage_steps=anneal_steps + il_no_tf_steps,
                    teacher_forcing=LinearDecay(
                        startp=1.0,
                        endp=0.0,
                        steps=anneal_steps,
                    ),
                ),
            ],
            lr_scheduler_builder=Builder(
                LambdaLR,
                {"lr_lambda": LinearDecay(steps=training_steps)},
            ),
        )
    def training_pipeline(cls, **kwargs):
        dagger_steos = int(1e4)
        ppo_steps = int(1e6)
        lr = 2.5e-4
        num_mini_batch = 2 if not torch.cuda.is_available() else 6
        update_repeats = 4
        num_steps = 128
        metric_accumulate_interval = cls.MAX_STEPS * 10  # Log every 10 max length tasks
        save_interval = 10000
        gamma = 0.99
        use_gae = True
        gae_lambda = 1.0
        max_grad_norm = 0.5

        return TrainingPipeline(
            save_interval=save_interval,
            metric_accumulate_interval=metric_accumulate_interval,
            optimizer_builder=Builder(optim.Adam, dict(lr=lr)),
            num_mini_batch=num_mini_batch,
            update_repeats=update_repeats,
            max_grad_norm=max_grad_norm,
            num_steps=num_steps,
            named_losses={
                "ppo_loss": PPO(clip_decay=LinearDecay(ppo_steps),
                                **PPOConfig),
                "imitation_loss": Imitation(),  # We add an imitation loss.
            },
            gamma=gamma,
            use_gae=use_gae,
            gae_lambda=gae_lambda,
            advance_scene_rollout_period=cls.ADVANCE_SCENE_ROLLOUT_PERIOD,
            pipeline_stages=[
                PipelineStage(
                    loss_names=["imitation_loss"],
                    teacher_forcing=LinearDecay(
                        startp=1.0,
                        endp=0.0,
                        steps=dagger_steos,
                    ),
                    max_stage_steps=dagger_steos,
                ),
                PipelineStage(
                    loss_names=["ppo_loss"],
                    max_stage_steps=ppo_steps,
                ),
            ],
            lr_scheduler_builder=Builder(
                LambdaLR, {"lr_lambda": LinearDecay(steps=ppo_steps)}),
        )
 def training_pipeline(cls, **kwargs):
     ppo_steps = int(250000000)
     lr = 3e-4
     num_mini_batch = 1
     update_repeats = 3
     num_steps = 30
     save_interval = 5000000
     log_interval = 1000
     gamma = 0.99
     use_gae = True
     gae_lambda = 0.95
     max_grad_norm = 0.5
     return TrainingPipeline(
         save_interval=save_interval,
         metric_accumulate_interval=log_interval,
         optimizer_builder=Builder(optim.Adam, dict(lr=lr)),
         num_mini_batch=num_mini_batch,
         update_repeats=update_repeats,
         max_grad_norm=max_grad_norm,
         num_steps=num_steps,
         named_losses={"ppo_loss": PPO(**PPOConfig)},
         gamma=gamma,
         use_gae=use_gae,
         gae_lambda=gae_lambda,
         advance_scene_rollout_period=cls.ADVANCE_SCENE_ROLLOUT_PERIOD,
         pipeline_stages=[
             PipelineStage(loss_names=["ppo_loss"],
                           max_stage_steps=ppo_steps)
         ],
         lr_scheduler_builder=Builder(
             LambdaLR, {"lr_lambda": LinearDecay(steps=ppo_steps)}),
     )
示例#4
0
    def training_pipeline(cls, **kwargs):
        total_train_steps = cls.TOTAL_IL_TRAIN_STEPS

        ppo_info = cls.rl_loss_default("ppo", steps=-1)
        imitation_info = cls.rl_loss_default("imitation")

        return cls._training_pipeline(
            named_losses={
                "imitation_loss": imitation_info["loss"],
            },
            pipeline_stages=[
                PipelineStage(
                    loss_names=["imitation_loss"],
                    teacher_forcing=LinearDecay(
                        startp=1.0,
                        endp=1.0,
                        steps=total_train_steps,
                    ),
                    max_stage_steps=total_train_steps,
                ),
            ],
            num_mini_batch=min(info["num_mini_batch"]
                               for info in [ppo_info, imitation_info]),
            update_repeats=min(info["update_repeats"]
                               for info in [ppo_info, imitation_info]),
            total_train_steps=total_train_steps,
        )
示例#5
0
 def training_pipeline(cls, **kwargs):
     ppo_steps = int(1e6)
     return TrainingPipeline(
         save_interval=200000,
         metric_accumulate_interval=1,
         optimizer_builder=Builder(optim.Adam, dict(lr=3e-4)),
         num_mini_batch=2,
         update_repeats=3,
         max_grad_norm=0.5,
         num_steps=30,
         named_losses={
             "ppo_loss": Builder(
                 PPO,
                 kwargs={},
                 default=PPOConfig,
             )
         },
         gamma=0.99,
         use_gae=True,
         gae_lambda=0.95,
         advance_scene_rollout_period=cls.ADVANCE_SCENE_ROLLOUT_PERIOD,
         pipeline_stages=[
             PipelineStage(loss_names=["ppo_loss"],
                           max_stage_steps=ppo_steps)
         ],
         lr_scheduler_builder=Builder(
             LambdaLR, {"lr_lambda": LinearDecay(steps=ppo_steps)}),
     )
    def training_pipeline(self, **kwargs):
        ppo_steps = int(300000000)
        lr = 3e-4
        num_mini_batch = 1
        update_repeats = 4
        num_steps = 128
        save_interval = 5000000
        log_interval = 10000
        gamma = 0.99
        use_gae = True
        gae_lambda = 0.95
        max_grad_norm = 0.5

        action_strs = ObjectNavTask.class_action_names()
        non_end_action_inds_set = {
            i
            for i, a in enumerate(action_strs) if a != robothor_constants.END
        }
        end_action_ind_set = {action_strs.index(robothor_constants.END)}

        return TrainingPipeline(
            save_interval=save_interval,
            metric_accumulate_interval=log_interval,
            optimizer_builder=Builder(optim.Adam, dict(lr=lr)),
            num_mini_batch=num_mini_batch,
            update_repeats=update_repeats,
            max_grad_norm=max_grad_norm,
            num_steps=num_steps,
            named_losses={
                "ppo_loss":
                PPO(**PPOConfig),
                "grouped_action_imitation":
                GroupedActionImitation(
                    nactions=len(ObjectNavTask.class_action_names()),
                    action_groups=[
                        non_end_action_inds_set, end_action_ind_set
                    ],
                ),
            },
            gamma=gamma,
            use_gae=use_gae,
            gae_lambda=gae_lambda,
            advance_scene_rollout_period=self.ADVANCE_SCENE_ROLLOUT_PERIOD,
            pipeline_stages=[
                PipelineStage(
                    loss_names=["ppo_loss", "grouped_action_imitation"],
                    max_stage_steps=ppo_steps,
                )
            ],
            lr_scheduler_builder=Builder(
                LambdaLR, {"lr_lambda": LinearDecay(steps=ppo_steps)}),
        )
    def training_pipeline(cls, **kwargs):
        total_train_steps = cls.TOTAL_IL_TRAIN_STEPS
        ppo_info = cls.rl_loss_default("ppo", steps=-1)

        num_mini_batch = ppo_info["num_mini_batch"]
        update_repeats = ppo_info["update_repeats"]

        # fmt: off
        return cls._training_pipeline(
            named_losses={
                "offpolicy_expert_ce_loss":
                MiniGridOffPolicyExpertCELoss(
                    total_episodes_in_epoch=int(1e6)),
            },
            pipeline_stages=[
                # Single stage, only with off-policy training
                PipelineStage(
                    loss_names=[],  # no on-policy losses
                    max_stage_steps=
                    total_train_steps,  # keep sampling episodes in the stage
                    # Enable off-policy training:
                    offpolicy_component=OffPolicyPipelineComponent(
                        # Pass a method to instantiate data iterators
                        data_iterator_builder=lambda **extra_kwargs:
                        create_minigrid_offpolicy_data_iterator(
                            path=os.path.join(
                                BABYAI_EXPERT_TRAJECTORIES_DIR,
                                "BabyAI-GoToLocal-v0{}.pkl".
                                format("" if torch.cuda.is_available() else
                                       "-small"),
                            ),
                            nrollouts=cls.NUM_TRAIN_SAMPLERS //
                            num_mini_batch,  # per trainer batch size
                            rollout_len=cls.ROLLOUT_STEPS,
                            instr_len=cls.INSTR_LEN,
                            **extra_kwargs,
                        ),
                        loss_names=["offpolicy_expert_ce_loss"
                                    ],  # off-policy losses
                        updates=num_mini_batch *
                        update_repeats,  # number of batches per rollout
                    ),
                ),
            ],
            # As we don't have any on-policy losses, we set the next
            # two values to zero to ensure we don't attempt to
            # compute gradients for on-policy rollouts:
            num_mini_batch=0,
            update_repeats=0,
            total_train_steps=total_train_steps,
        )
示例#8
0
    def training_pipeline(cls, **kwargs):
        total_train_steps = cls.TOTAL_RL_TRAIN_STEPS
        ppo_info = cls.rl_loss_default("ppo", steps=total_train_steps)

        return cls._training_pipeline(
            named_losses={"ppo_loss": ppo_info["loss"],},
            pipeline_stages=[
                PipelineStage(
                    loss_names=["ppo_loss"], max_stage_steps=total_train_steps,
                ),
            ],
            num_mini_batch=ppo_info["num_mini_batch"],
            update_repeats=ppo_info["update_repeats"],
            total_train_steps=total_train_steps,
        )
    def training_pipeline(cls, **kwargs):
        total_train_steps = cls.TOTAL_IL_TRAIN_STEPS
        ppo_info = cls.rl_loss_default("ppo", steps=-1)

        num_mini_batch = ppo_info["num_mini_batch"]
        update_repeats = ppo_info["update_repeats"]

        return cls._training_pipeline(
            named_losses={
                "offpolicy_expert_ce_loss":
                MiniGridOffPolicyExpertCELoss(
                    total_episodes_in_epoch=int(1e6) //
                    len(cls.machine_params("train")["gpu_ids"])),
            },
            pipeline_stages=[
                PipelineStage(
                    loss_names=[],
                    max_stage_steps=total_train_steps,
                    offpolicy_component=OffPolicyPipelineComponent(
                        data_iterator_builder=lambda **kwargs:
                        create_minigrid_offpolicy_data_iterator(
                            path=os.path.join(
                                BABYAI_EXPERT_TRAJECTORIES_DIR,
                                "BabyAI-GoToLocal-v0{}.pkl".
                                format("" if torch.cuda.is_available() else
                                       "-small"),
                            ),
                            nrollouts=cls.NUM_TRAIN_SAMPLERS // num_mini_batch,
                            rollout_len=cls.ROLLOUT_STEPS,
                            instr_len=cls.INSTR_LEN,
                            **kwargs,
                        ),
                        data_iterator_kwargs_generator=cls.
                        expert_ce_loss_kwargs_generator,
                        loss_names=["offpolicy_expert_ce_loss"],
                        updates=num_mini_batch * update_repeats,
                    ),
                ),
            ],
            num_mini_batch=0,
            update_repeats=0,
            total_train_steps=total_train_steps,
        )
示例#10
0
 def training_pipeline(cls, **kwargs):
     total_train_steps = cls.TOTAL_IL_TRAIN_STEPS
     loss_info = cls.rl_loss_default("imitation")
     return cls._training_pipeline(
         named_losses={"imitation_loss": loss_info["loss"]},
         pipeline_stages=[
             PipelineStage(
                 loss_names=["imitation_loss"],
                 teacher_forcing=LinearDecay(
                     startp=1.0,
                     endp=0.0,
                     steps=total_train_steps // 2,
                 ),
                 max_stage_steps=total_train_steps,
             )
         ],
         num_mini_batch=loss_info["num_mini_batch"],
         update_repeats=loss_info["update_repeats"],
         total_train_steps=total_train_steps,
     )
示例#11
0
 def training_pipeline(cls, **kwargs) -> TrainingPipeline:
     ppo_steps = int(150000)
     return TrainingPipeline(
         named_losses=dict(ppo_loss=PPO(**PPOConfig)),  # type:ignore
         pipeline_stages=[
             PipelineStage(loss_names=["ppo_loss"],
                           max_stage_steps=ppo_steps)
         ],
         optimizer_builder=Builder(optim.Adam, dict(lr=1e-4)),
         num_mini_batch=4,
         update_repeats=3,
         max_grad_norm=0.5,
         num_steps=16,
         gamma=0.99,
         use_gae=True,
         gae_lambda=0.95,
         advance_scene_rollout_period=None,
         save_interval=10000,
         metric_accumulate_interval=1,
         lr_scheduler_builder=Builder(
             LambdaLR,
             {"lr_lambda": LinearDecay(steps=ppo_steps)}  # type:ignore
         ),
     )