def create_face_embedding(model_path,dataset_path,out_emb_path,out_filename): # 建立npy文件 files_list,names_list=file_processing.gen_files_labels(dataset_path,postfix=['*.jpg']) embeddings,label_list=get_face_embedding(model_path,files_list, names_list) print("label_list:{}".format(label_list)) print("have {} label".format(len(label_list))) embeddings=np.asarray(embeddings) np.save(out_emb_path, embeddings) file_processing.write_list_data(out_filename, label_list, mode='w')
def save_id(train_id_path, train_id, val_id_path, val_id): if not os.path.exists(os.path.dirname(train_id_path)): os.makedirs(os.path.dirname(train_id_path)) if not os.path.exists(os.path.dirname(val_id_path)): os.makedirs(os.path.dirname(val_id_path)) # 保存图片id数据 file_processing.write_list_data(train_id_path, train_id, mode="w") file_processing.write_list_data(val_id_path, val_id, mode="w") print("train num:{},save path:{}".format(len(train_id), train_id_path)) print("val num:{},save path:{}".format(len(val_id), val_id_path))
def create_face_embedding(model_path, dataset_path, out_emb_path, out_filename): ''' :param model_path: faceNet模型路径 :param dataset_path: 人脸数据库路径,每一类单独一个文件夹 :param out_emb_path: 输出embeddings的路径 :param out_filename: 输出与embeddings一一对应的标签 :return: None ''' files_list, names_list = file_processing.gen_files_labels( dataset_path, postfix=['*.jpg', '*jpeg']) embeddings, label_list = get_face_embedding(model_path, files_list, names_list) print("label_list:{}".format(label_list)) print("have {} label".format(len(label_list))) embeddings = np.asarray(embeddings) np.save(out_emb_path, embeddings) file_processing.write_list_data(out_filename, label_list, mode='w')