示例#1
0
def process_train_dataset(model, train_p, batch_size):
    train_p.dataset_map(
        train_p.parse_detection_example(train_p.image_feature_map,
                                        len(model.num_classes),
                                        model.channels))
    train_p.dataset_map(train_p.tf_augment_data)
    train_p.dataset_shuffle(get_flag("batch_size", batch_size))
    train_p.dataset_batch(get_flag("batch_size", batch_size))
    train_p.dataset_map(lambda x, y: (x,
                                      train_p.transform_targets(
                                          y, model.grid_factor, model.anchors,
                                          get_anchor_masks(model.anchors))))
示例#2
0
def nms(preds,
        score_threshold=get_flag("yolo_score_threshold", 0.2),
        iou_threshold=get_flag("yolo_iou_threshold", 0.45),
        max_output=get_flag("yolo_max_boxes", 10),
        test_image_shape=None):
    boxes, scores_combined, scores = tf.split(preds, (4, 1, -1), axis=-1)
    boxes = rescale_pred_wh(boxes, test_image_shape)

    @jit(nopython=True)
    def _nms(boxes, scores_combined, scores):
        n_sample = boxes.shape[0]
        selected_boxes = []
        selected_scores = []
        # selected_boxes = np.zeros((max_output * n_sample, 4), dtype=np.float32)
        # selected_scores = np.zeros((max_output * n_sample, scores.shape[-1]), dtype=np.float32)
        # nums = np.zeros(n_sample, dtype=np.float32)

        idx_start = 0
        for n in range(n_sample):
            box, score_combined, score = boxes[n], scores_combined[n], scores[
                n]
            mask = (score_combined >= score_threshold).ravel()

            box = box[mask]
            score_combined = score_combined[mask]
            score = score[mask]
            nms_indexes = non_max_suppression(box, score_combined,
                                              iou_threshold)[:max_output]
            if len(nms_indexes) != 0:
                selected_boxes.append(box[nms_indexes])
                selected_scores.append(score[nms_indexes])
            else:
                selected_boxes.append(np.empty((0, box.shape[-1]), np.int32))
                selected_scores.append(
                    np.empty((0, score.shape[-1]), np.float32))
            # num = len(nms_indexes)

            # if num != 0:
            #
            #     selected_boxes[idx_start: idx_start + num] = box[nms_indexes]
            #     selected_scores[idx_start: idx_start + num] = score[nms_indexes]
            # nums[n] = num

            # idx_start += num
        return selected_boxes, selected_scores

    return _nms(np.array(boxes), np.array(scores_combined), np.array(scores))
    boxes, scores, nums = _nms(np.array(boxes), np.array(scores_combined),
                               np.array(scores))
    return tf.convert_to_tensor(boxes, tf.float32), tf.convert_to_tensor(
        scores, tf.float32), tf.convert_to_tensor(nums, tf.int32)
示例#3
0
文件: layers.py 项目: mohsu/cv
    def body(i, boxes, scores, nums):
        selected_indices, selected_scores = tf.image.non_max_suppression_with_scores(
            tf.reshape(batch_boxes[i], (-1, 4)),
            tf.reshape(batch_scores_combined[i], (-1, )),
            max_output_size=get_flag("yolo_max_boxes", max_box),
            iou_threshold=get_flag("yolo_iou_threshold", 0.45),
            score_threshold=get_flag("yolo_score_threshold", 0.2),
            soft_nms_sigma=get_flag("yolo_soft_nms_sigma", 0.0))
        selected_boxes = tf.gather(batch_boxes[i], selected_indices)
        selected_scores = tf.gather(batch_scores[i], selected_indices)

        boxes = tf.concat([boxes, selected_boxes], axis=0)
        scores = tf.concat([scores, selected_scores], axis=0)
        nums = tf.concat([nums, [tf.shape(selected_indices)[0]]], axis=0)

        return tf.add(i, 1), boxes, scores, nums
示例#4
0
文件: layers.py 项目: mohsu/cv
def yolo_boxes(pred, anchors, classes):
    # pred: (batch_size, grid, grid, anchors, (x, y, w, h, obj, ...classes))
    grid_size = tf.shape(pred)[1]
    box_xy, box_wh, objectness, class_probs = tf.split(pred,
                                                       (2, 2, 1, sum(classes)),
                                                       axis=-1)

    box_xy = tf.sigmoid(box_xy) * get_flag("yolo_scale_xy", 1.1)
    objectness = tf.sigmoid(objectness)
    class_probs = tf.sigmoid(class_probs)
    pred_box = tf.concat((box_xy, box_wh), axis=-1)  # original xywh for loss

    # !!! grid[x][y] == (y, x)
    grid = tf.meshgrid(tf.range(grid_size), tf.range(grid_size))
    grid = tf.expand_dims(tf.stack(grid, axis=-1), axis=2)  # [gx, gy, 1, 2]

    box_xy = (box_xy + tf.cast(grid, tf.float32)) / tf.cast(
        grid_size, tf.float32)
    box_wh = tf.exp(box_wh) * anchors

    box_x1y1 = box_xy - box_wh / 2
    box_x2y2 = box_xy + box_wh / 2
    bbox = tf.concat([box_x1y1, box_x2y2], axis=-1)

    return bbox, objectness, class_probs, pred_box
示例#5
0
文件: layers.py 项目: mohsu/cv
    def body(i, boxes, scores, nums):
        selected_indices, selected_scores = tf.image.non_max_suppression_with_scores(
            tf.reshape(batch_boxes[i], (-1, 4)),
            tf.reshape(batch_scores_combined[i], (-1, )),
            max_output_size=get_flag("yolo_max_boxes", 10),
            iou_threshold=get_flag("yolo_iou_threshold", 0.45),
            score_threshold=get_flag("yolo_score_threshold", 0.2))
        selected_boxes = tf.gather(batch_boxes[i], selected_indices)
        selected_scores = tf.gather(batch_scores[i], selected_indices)

        boxes.write(i, selected_boxes)
        scores.write(i, selected_scores)
        nums.write(i, tf.shape(selected_indices)[0])

        # selected.write(i, tf.concat([boxes, scores], axis=-1))
        # selected.append([boxes, scores])
        return tf.add(i, 1), boxes, scores, nums
示例#6
0
文件: layers.py 项目: mohsu/cv
    def body(boxes, scores_combined, scores):
        selected_indices, selected_scores = tf.image.non_max_suppression_with_scores(
            tf.reshape(boxes, (-1, 4)),
            tf.reshape(scores_combined, (-1, )),
            max_output_size=get_flag("yolo_max_boxes", max_box),
            iou_threshold=get_flag("yolo_iou_threshold", 0.45),
            score_threshold=get_flag("yolo_score_threshold", 0.2),
            soft_nms_sigma=get_flag("yolo_soft_nms_sigma", 0.0))

        selected_count = tf.shape(selected_indices)[0]
        selected_boxes = tf.gather(boxes, selected_indices)
        selected_scores = tf.gather(scores, selected_indices)
        pad_num = max_box - selected_count

        return tf.concat([selected_boxes, tf.zeros((pad_num, 4), dtype=tf.float32)], axis=0), \
               tf.concat([selected_scores, tf.zeros((pad_num, tf.shape(batch_scores)[-1]), dtype=tf.float32)], axis=0),\
               selected_count
示例#7
0
文件: TfDataset.py 项目: mohsu/cv
    def tf_augment_data(self, x_train, y_train):
        x_train, y_train = tf.numpy_function(self.augment_data,
                                             [x_train, y_train],
                                             [tf.float32, tf.float32])

        x_train.set_shape((self.size, self.size, self.num_channel))
        y_train.set_shape((get_flag("yolo_max_boxes",
                                    self.max_box), 4 + self.sum_num_classes))

        return x_train, y_train
示例#8
0
def get_test_dataset(model, voc_set, batch_size=24):
    test_p = TfDataset(model.input_size[0], model.channels, model.img_aug,
                       model.num_classes, model.max_box)
    test_p.dataset = test_p.load_voc_dataset(voc_set.testing, model.to_index)
    test_p.dataset_map(
        test_p.parse_detection_example(test_p.image_feature_map,
                                       len(model.num_classes), model.channels))
    test_p.dataset_map(test_p.tf_augment_data)
    test_p.dataset_batch(get_flag("batch_size", batch_size))

    # org_p = TfDataset(model.input_size[0], model.img_aug, len(model.class_names))
    # org_p.dataset = org_p.load_voc_dataset(voc_set.testing, model.to_index)
    # org_p.dataset_map(org_p.parse_detection_example(org_p.image_feature_map))
    # org_p.dataset_batch(get_flag("batch_size", batch_size))

    return test_p.dataset
示例#9
0
文件: TfDataset.py 项目: mohsu/cv
    def augment_data(self, x_train, y_train):
        image = x_train

        bbs = []
        for box in y_train:
            bbs.append(
                ia.BoundingBox(x1=box[0],
                               y1=box[1],
                               x2=box[2],
                               y2=box[3],
                               label=box[4:]))
        bboi = ia.BoundingBoxesOnImage(bbs, shape=image.shape)

        images, bboxes = self.img_aug.aug([image], [bboi])

        y_train = np.zeros((get_flag("yolo_max_boxes",
                                     self.max_box), 4 + self.sum_num_classes),
                           dtype=np.float32)
        bbs = bboxes[0].remove_out_of_image().clip_out_of_image()

        for i, bbox in enumerate(bbs.bounding_boxes):
            # skip any coord < 0 or >= size bbox after augmentation
            if not 0 < bbox.center_x < self.size or not 0 < bbox.center_y < self.size:
                continue
            y_train[i][
                0:
                4] = bbox.x1 / self.size, bbox.y1 / self.size, bbox.x2 / self.size, bbox.y2 / self.size
            # convert label to one hot
            y_idx_start = 4
            for idx_cat in range(len(self.num_classes)):
                y_idx_end = y_idx_start + self.num_classes[idx_cat]
                y_train[i][y_idx_start:y_idx_end] = np.eye(
                    self.num_classes[idx_cat])[int(bbox.label[idx_cat])]
                y_idx_start = y_idx_end

        x_train = tf.convert_to_tensor(images[0], dtype=tf.float32)
        y_train = tf.convert_to_tensor(y_train, dtype=tf.float32)

        return x_train, y_train
示例#10
0
文件: layers.py 项目: mohsu/cv
 def _calculate_loss(i, j):
     return obj_mask * binary_crossentropy(true_class[..., i:j],
                                           pred_class[..., i:j],
                                           label_smoothing=get_flag(
                                               "yolo_label_smoothing", 0.0))