示例#1
0
            def Hv(v):
                hessian = get_flat_grads(
                    torch.dot(grad_kld_old_param, v),
                    self.pi
                ).detach()

                return hessian + cg_damping * v
示例#2
0
    def train(self, env, render=False):
        num_iters = self.train_config["num_iters"]
        num_steps_per_iter = self.train_config["num_steps_per_iter"]
        horizon = self.train_config["horizon"]
        gamma_ = self.train_config["gamma"]
        lambda_ = self.train_config["lambda"]
        eps = self.train_config["epsilon"]
        max_kl = self.train_config["max_kl"]
        cg_damping = self.train_config["cg_damping"]
        normalize_advantage = self.train_config["normalize_advantage"]

        rwd_iter_means = []
        for i in range(num_iters):
            rwd_iter = []

            obs = []
            acts = []
            rets = []
            advs = []
            gms = []

            steps = 0
            while steps < num_steps_per_iter:
                ep_obs = []
                ep_rwds = []
                ep_disc_rwds = []
                ep_gms = []
                ep_lmbs = []

                t = 0
                done = False

                ob = env.reset()

                while not done and steps < num_steps_per_iter:
                    act = self.act(ob)

                    ep_obs.append(ob)
                    obs.append(ob)
                    acts.append(act)

                    if render:
                        env.render()
                    ob, rwd, done, info = env.step(act)

                    ep_rwds.append(rwd)
                    ep_disc_rwds.append(rwd * (gamma_**t))
                    ep_gms.append(gamma_**t)
                    ep_lmbs.append(lambda_**t)

                    t += 1
                    steps += 1

                    if horizon is not None:
                        if t >= horizon:
                            done = True
                            break

                if done:
                    rwd_iter.append(np.sum(ep_rwds))

                ep_obs = FloatTensor(np.array(ep_obs))
                ep_rwds = FloatTensor(ep_rwds)
                ep_disc_rwds = FloatTensor(ep_disc_rwds)
                ep_gms = FloatTensor(ep_gms)
                ep_lmbs = FloatTensor(ep_lmbs)

                ep_disc_rets = FloatTensor(
                    [sum(ep_disc_rwds[i:]) for i in range(t)])
                ep_rets = ep_disc_rets / ep_gms

                rets.append(ep_rets)

                self.v.eval()
                curr_vals = self.v(ep_obs).detach()
                next_vals = torch.cat(
                    (self.v(ep_obs)[1:], FloatTensor([[0.]]))).detach()
                ep_deltas = ep_rwds.unsqueeze(-1)\
                    + gamma_ * next_vals\
                    - curr_vals

                ep_advs = FloatTensor([
                    ((ep_gms * ep_lmbs)[:t - j].unsqueeze(-1) *
                     ep_deltas[j:]).sum() for j in range(t)
                ])
                advs.append(ep_advs)

                gms.append(ep_gms)

            rwd_iter_means.append(np.mean(rwd_iter))
            print("Iterations: {},   Reward Mean: {}".format(
                i + 1, np.mean(rwd_iter)))

            obs = FloatTensor(np.array(obs))
            acts = FloatTensor(np.array(acts))
            rets = torch.cat(rets)
            advs = torch.cat(advs)
            gms = torch.cat(gms)

            if normalize_advantage:
                advs = (advs - advs.mean()) / advs.std()

            self.v.train()
            old_params = get_flat_params(self.v).detach()
            old_v = self.v(obs).detach()

            def constraint():
                return ((old_v - self.v(obs))**2).mean()

            grad_diff = get_flat_grads(constraint(), self.v)

            def Hv(v):
                hessian = get_flat_grads(torch.dot(grad_diff, v), self.v)\
                    .detach()

                return hessian

            g = get_flat_grads(
                ((-1) * (self.v(obs).squeeze() - rets)**2).mean(),
                self.v).detach()
            s = conjugate_gradient(Hv, g).detach()

            Hs = Hv(s).detach()
            alpha = torch.sqrt(2 * eps / torch.dot(s, Hs))

            new_params = old_params + alpha * s

            set_params(self.v, new_params)

            self.pi.train()
            old_params = get_flat_params(self.pi).detach()
            old_distb = self.pi(obs)

            def L():
                distb = self.pi(obs)

                return (advs * torch.exp(
                    distb.log_prob(acts) - old_distb.log_prob(acts).detach())
                        ).mean()

            def kld():
                distb = self.pi(obs)

                if self.discrete:
                    old_p = old_distb.probs.detach()
                    p = distb.probs

                    return (old_p * (torch.log(old_p) - torch.log(p)))\
                        .sum(-1)\
                        .mean()

                else:
                    old_mean = old_distb.mean.detach()
                    old_cov = old_distb.covariance_matrix.sum(-1).detach()
                    mean = distb.mean
                    cov = distb.covariance_matrix.sum(-1)

                    return (0.5) * ((old_cov / cov).sum(-1) +
                                    (((old_mean - mean)**2) / cov).sum(-1) -
                                    self.action_dim + torch.log(cov).sum(-1) -
                                    torch.log(old_cov).sum(-1)).mean()

            grad_kld_old_param = get_flat_grads(kld(), self.pi)

            def Hv(v):
                hessian = get_flat_grads(torch.dot(grad_kld_old_param, v),
                                         self.pi).detach()

                return hessian + cg_damping * v

            g = get_flat_grads(L(), self.pi).detach()

            s = conjugate_gradient(Hv, g).detach()
            Hs = Hv(s).detach()

            new_params = rescale_and_linesearch(g, s, Hs, max_kl, L, kld,
                                                old_params, self.pi)

            set_params(self.pi, new_params)

        return rwd_iter_means
示例#3
0
            def Hv(v):
                hessian = get_flat_grads(torch.dot(grad_diff, v), self.v)\
                    .detach()

                return hessian
示例#4
0
    def train(self, env, render=False):
        lr = self.train_config["lr"]
        num_iters = self.train_config["num_iters"]
        num_steps_per_iter = self.train_config["num_steps_per_iter"]
        horizon = self.train_config["horizon"]
        discount = self.train_config["discount"]
        max_kl = self.train_config["max_kl"]
        cg_damping = self.train_config["cg_damping"]
        normalize_return = self.train_config["normalize_return"]
        use_baseline = self.train_config["use_baseline"]

        if use_baseline:
            opt_v = torch.optim.Adam(self.v.parameters(), lr)

        rwd_iter_means = []
        for i in range(num_iters):
            rwd_iter = []

            obs = []
            acts = []
            rets = []
            disc = []

            steps = 0
            while steps < num_steps_per_iter:
                ep_rwds = []
                ep_disc_rwds = []
                ep_disc = []

                t = 0
                done = False

                ob = env.reset()

                while not done and steps < num_steps_per_iter:
                    act = self.act(ob)

                    obs.append(ob)
                    acts.append(act)

                    if render:
                        env.render()
                    ob, rwd, done, info = env.step(act)

                    ep_rwds.append(rwd)
                    ep_disc_rwds.append(rwd * (discount ** t))
                    ep_disc.append(discount ** t)

                    t += 1
                    steps += 1

                    if horizon is not None:
                        if t >= horizon:
                            done = True
                            break

                ep_disc = FloatTensor(ep_disc)

                ep_disc_rets = FloatTensor(
                    [sum(ep_disc_rwds[i:]) for i in range(t)]
                )
                ep_rets = ep_disc_rets / ep_disc

                rets.append(ep_rets)
                disc.append(ep_disc)

                if done:
                    rwd_iter.append(np.sum(ep_rwds))

            rwd_iter_means.append(np.mean(rwd_iter))
            print(
                "Iterations: {},   Reward Mean: {}"
                .format(i + 1, np.mean(rwd_iter))
            )

            obs = FloatTensor(np.array(obs))
            acts = FloatTensor(np.array(acts))
            rets = torch.cat(rets)
            disc = torch.cat(disc)

            if normalize_return:
                rets = (rets - rets.mean()) / rets.std()

            if use_baseline:
                self.v.eval()
                delta = (rets - self.v(obs).squeeze()).detach()

                self.v.train()

                opt_v.zero_grad()
                loss = (-1) * disc * delta * self.v(obs).squeeze()
                loss.mean().backward()
                opt_v.step()

            self.pi.train()
            old_params = get_flat_params(self.pi).detach()
            old_distb = self.pi(obs)

            def L():
                distb = self.pi(obs)

                if use_baseline:
                    return (disc * delta * torch.exp(
                                distb.log_prob(acts)
                                - old_distb.log_prob(acts).detach()
                            )).mean()
                else:
                    return (disc * rets * torch.exp(
                                distb.log_prob(acts)
                                - old_distb.log_prob(acts).detach()
                            )).mean()

            def kld():
                distb = self.pi(obs)

                if self.discrete:
                    old_p = old_distb.probs.detach()
                    p = distb.probs

                    return (old_p * (torch.log(old_p) - torch.log(p)))\
                        .sum(-1)\
                        .mean()

                else:
                    old_mean = old_distb.mean.detach()
                    old_cov = old_distb.covariance_matrix.sum(-1).detach()
                    mean = distb.mean
                    cov = distb.covariance_matrix.sum(-1)

                    return (0.5) * (
                            (old_cov / cov).sum(-1)
                            + (((old_mean - mean) ** 2) / cov).sum(-1)
                            - self.action_dim
                            + torch.log(cov).sum(-1)
                            - torch.log(old_cov).sum(-1)
                        ).mean()

            grad_kld_old_param = get_flat_grads(kld(), self.pi)

            def Hv(v):
                hessian = get_flat_grads(
                    torch.dot(grad_kld_old_param, v),
                    self.pi
                ).detach()

                return hessian + cg_damping * v

            g = get_flat_grads(L(), self.pi).detach()

            s = conjugate_gradient(Hv, g).detach()
            Hs = Hv(s).detach()

            new_params = rescale_and_linesearch(
                g, s, Hs, max_kl, L, kld, old_params, self.pi
            )

            set_params(self.pi, new_params)

        return rwd_iter_means