示例#1
0
def train():
    if not os.path.exists(args.save_folder):
        os.mkdir(args.save_folder)

    dataset = COCODetection(image_path=cfg.dataset.train_images,
                            info_file=cfg.dataset.train_info,
                            transform=SSDAugmentation(MEANS))
    print("dataset:", dataset[0])

    if args.validation_epoch > 0:
        setup_eval()
        val_dataset = COCODetection(image_path=cfg.dataset.valid_images,
                                    info_file=cfg.dataset.valid_info,
                                    transform=BaseTransform(MEANS))

    # Parallel wraps the underlying module, but when saving and loading we don't want that
    yolact_net = Yolact()
    net = yolact_net
    net.train()

    if args.log:
        log = Log(cfg.name,
                  args.log_folder,
                  dict(args._get_kwargs()),
                  overwrite=(args.resume is None),
                  log_gpu_stats=args.log_gpu)

    # I don't use the timer during training (I use a different timing method).
    # Apparently there's a race condition with multiple GPUs, so disable it just to be safe.
    timer.disable_all()

    # Both of these can set args.resume to None, so do them before the check
    if args.resume == 'interrupt':
        args.resume = SavePath.get_interrupt(args.save_folder)
    elif args.resume == 'latest':
        args.resume = SavePath.get_latest(args.save_folder, cfg.name)

    if args.resume is not None:
        print('Resuming training, loading {}...'.format(args.resume))
        yolact_net.load_weights(args.resume)

        if args.start_iter == -1:
            args.start_iter = SavePath.from_str(args.resume).iteration
    else:
        print('Initializing weights...')
        yolact_net.init_weights(backbone_path=args.save_folder +
                                cfg.backbone.path)

    optimizer = optim.SGD(net.parameters(),
                          lr=args.lr,
                          momentum=args.momentum,
                          weight_decay=args.decay)
    criterion = MultiBoxLoss(num_classes=cfg.num_classes,
                             pos_threshold=cfg.positive_iou_threshold,
                             neg_threshold=cfg.negative_iou_threshold,
                             negpos_ratio=cfg.ohem_negpos_ratio)

    if args.batch_alloc is not None:
        args.batch_alloc = [int(x) for x in args.batch_alloc.split(',')]
        if sum(args.batch_alloc) != args.batch_size:
            print(
                'Error: Batch allocation (%s) does not sum to batch size (%s).'
                % (args.batch_alloc, args.batch_size))
            exit(-1)

    net = CustomDataParallel(NetLoss(net, criterion))
    if args.cuda:
        net = net.cuda()

    # Initialize everything
    if not cfg.freeze_bn:
        yolact_net.freeze_bn()  # Freeze bn so we don't kill our means
    yolact_net(torch.zeros(1, 3, cfg.max_size, cfg.max_size).cuda())
    if not cfg.freeze_bn: yolact_net.freeze_bn(True)

    # loss counters
    loc_loss = 0
    conf_loss = 0
    iteration = max(args.start_iter, 0)
    last_time = time.time()

    epoch_size = len(dataset) // args.batch_size
    num_epochs = math.ceil(cfg.max_iter / epoch_size)

    # Which learning rate adjustment step are we on? lr' = lr * gamma ^ step_index
    step_index = 0

    data_loader = data.DataLoader(dataset,
                                  args.batch_size,
                                  num_workers=args.num_workers,
                                  shuffle=True,
                                  collate_fn=detection_collate,
                                  pin_memory=True)

    save_path = lambda epoch, iteration: SavePath(
        cfg.name, epoch, iteration).get_path(root=args.save_folder)
    time_avg = MovingAverage()

    global loss_types  # Forms the print order
    loss_avgs = {k: MovingAverage(100) for k in loss_types}

    print('Begin training!')
    print()
    # try-except so you can use ctrl+c to save early and stop training
    try:
        for epoch in range(num_epochs):
            # Resume from start_iter
            if (epoch + 1) * epoch_size < iteration:
                continue

            for datum in data_loader:
                # Stop if we've reached an epoch if we're resuming from start_iter
                if iteration == (epoch + 1) * epoch_size:
                    break

                # Stop at the configured number of iterations even if mid-epoch
                if iteration == cfg.max_iter:
                    break

                # Change a config setting if we've reached the specified iteration
                changed = False
                for change in cfg.delayed_settings:
                    if iteration >= change[0]:
                        changed = True
                        cfg.replace(change[1])

                        # Reset the loss averages because things might have changed
                        for avg in loss_avgs:
                            avg.reset()

                # If a config setting was changed, remove it from the list so we don't keep checking
                if changed:
                    cfg.delayed_settings = [
                        x for x in cfg.delayed_settings if x[0] > iteration
                    ]

                # Warm up by linearly interpolating the learning rate from some smaller value
                if cfg.lr_warmup_until > 0 and iteration <= cfg.lr_warmup_until:
                    set_lr(optimizer, (args.lr - cfg.lr_warmup_init) *
                           (iteration / cfg.lr_warmup_until) +
                           cfg.lr_warmup_init)

                # Adjust the learning rate at the given iterations, but also if we resume from past that iteration
                while step_index < len(
                        cfg.lr_steps
                ) and iteration >= cfg.lr_steps[step_index]:
                    step_index += 1
                    set_lr(optimizer, args.lr * (args.gamma**step_index))

                # Zero the grad to get ready to compute gradients
                optimizer.zero_grad()

                # Forward Pass + Compute loss at the same time (see CustomDataParallel and NetLoss)
                losses = net(datum)

                losses = {k: (v).mean()
                          for k, v in losses.items()
                          }  # Mean here because Dataparallel
                loss = sum([losses[k] for k in losses])

                # no_inf_mean removes some components from the loss, so make sure to backward through all of it
                # all_loss = sum([v.mean() for v in losses.values()])

                # Backprop
                loss.backward(
                )  # Do this to free up vram even if loss is not finite
                if torch.isfinite(loss).item():
                    optimizer.step()

                # Add the loss to the moving average for bookkeeping
                for k in losses:
                    loss_avgs[k].add(losses[k].item())

                cur_time = time.time()
                elapsed = cur_time - last_time
                last_time = cur_time

                # Exclude graph setup from the timing information
                if iteration != args.start_iter:
                    time_avg.add(elapsed)

                if iteration % 10 == 0:
                    eta_str = str(
                        datetime.timedelta(seconds=(cfg.max_iter - iteration) *
                                           time_avg.get_avg())).split('.')[0]

                    total = sum([loss_avgs[k].get_avg() for k in losses])
                    loss_labels = sum([[k, loss_avgs[k].get_avg()]
                                       for k in loss_types if k in losses], [])

                    print(('[%3d] %7d ||' + (' %s: %.3f |' * len(losses)) +
                           ' T: %.3f || ETA: %s || timer: %.3f') %
                          tuple([epoch, iteration] + loss_labels +
                                [total, eta_str, elapsed]),
                          flush=True)

                if args.log:
                    precision = 5
                    loss_info = {
                        k: round(losses[k].item(), precision)
                        for k in losses
                    }
                    loss_info['T'] = round(losses[k].item(), precision)

                    if args.log_gpu:
                        log.log_gpu_stats = (iteration % 10 == 0
                                             )  # nvidia-smi is sloooow

                    log.log('train',
                            loss=loss_info,
                            epoch=epoch,
                            iter=iteration,
                            lr=round(cur_lr, 10),
                            elapsed=elapsed)

                    log.log_gpu_stats = args.log_gpu

                iteration += 1

                if iteration % args.save_interval == 0 and iteration != args.start_iter:
                    if args.keep_latest:
                        latest = SavePath.get_latest(args.save_folder,
                                                     cfg.name)

                    print('Saving state, iter:', iteration)
                    yolact_net.save_weights(save_path(epoch, iteration))

                    if args.keep_latest and latest is not None:
                        if args.keep_latest_interval <= 0 or iteration % args.keep_latest_interval != args.save_interval:
                            print('Deleting old save...')
                            os.remove(latest)

            # This is done per epoch
            if args.validation_epoch > 0:
                if epoch % args.validation_epoch == 0 and epoch > 0:
                    compute_validation_map(epoch, iteration, yolact_net,
                                           val_dataset,
                                           log if args.log else None)

        # Compute validation mAP after training is finished
        compute_validation_map(epoch, iteration, yolact_net, val_dataset,
                               log if args.log else None)
    except KeyboardInterrupt:
        if args.interrupt:
            print('Stopping early. Saving network...')

            # Delete previous copy of the interrupted network so we don't spam the weights folder
            SavePath.remove_interrupt(args.save_folder)

            yolact_net.save_weights(
                save_path(epoch,
                          repr(iteration) + '_interrupt'))
        exit()

    yolact_net.save_weights(save_path(epoch, iteration))
示例#2
0
def train():
    #1: train 결과를 저장할 폴더를 생성
    if not os.path.exists(args.save_folder):
        os.mkdir(args.save_folder)

    #2: MSCOCO에서 제공하는 API를 통해 train dataset을 준비한다.
    dataset = COCODetection(image_path=cfg.dataset.train_images,
                            info_file=cfg.dataset.train_info,
                            transform=SSDAugmentation(MEANS))

    #   만약 train-validation기법을 사용한다면, eval dataset도 준비한다.
    if args.validation_epoch > 0:
        setup_eval()
        val_dataset = COCODetection(image_path=cfg.dataset.valid_images,
                                    info_file=cfg.dataset.valid_info,
                                    transform=BaseTransform(MEANS))

    #3: 구현한 yolact() class의 객체를 만들고 train모드로 설정.
    #주의 : net과 yolact_net은 메모리에 저장된 같은 객체를 공유한다.
    #       다만 net은 이후에 yolact와 MultiBoxLoss가 결함되어 train을 위한
    #       통합된 객체로 다시 정의되기 때문에 yolact넷 객체에만 따로 접근하기 위해
    #       yolact_net을 deep copy본으로 가지고 있는다.
    yolact_net = Yolact()
    net = yolact_net
    net.train()

    #######################################################################
    #######RESUME 관련#####################################################
    #4: args.log와 args.resume은 train도중 log를 남기는 것과, train이
    # 불가피하게 중도에 정지되었을 경우, 중단 지점부터 재시작할 수 있도록
    # 기능을 만든 것이므로 필요한 경우에만 더 자세히 보도록 하자.
    if args.log:
        log = Log(cfg.name,
                  args.log_folder,
                  dict(args._get_kwargs()),
                  overwrite=(args.resume is None),
                  log_gpu_stats=args.log_gpu)

    # I don't use the timer during training (I use a different timing method).
    # Apparently there's a race condition with multiple GPUs, so disable it just to be safe.
    timer.disable_all()

    # Both of these can set args.resume to None, so do them before the check
    if args.resume == 'interrupt':
        args.resume = SavePath.get_interrupt(args.save_folder)
    elif args.resume == 'latest':
        args.resume = SavePath.get_latest(args.save_folder, cfg.name)

    if args.resume is not None:
        print('Resuming training, loading {}...'.format(args.resume))
        yolact_net.load_weights(args.resume)

        if args.start_iter == -1:
            args.start_iter = SavePath.from_str(args.resume).iteration
    else:
        print('Initializing weights...')
        yolact_net.init_weights(backbone_path=args.save_folder +
                                cfg.backbone.path)
    #######END#############################################################
    #######################################################################

    #5: yolact의 optimizer와 loss함수를 설정한다.
    optimizer = optim.SGD(net.parameters(),
                          lr=args.lr,
                          momentum=args.momentum,
                          weight_decay=args.decay)
    criterion = MultiBoxLoss(num_classes=cfg.num_classes,
                             pos_threshold=cfg.positive_iou_threshold,
                             neg_threshold=cfg.negative_iou_threshold,
                             negpos_ratio=cfg.ohem_negpos_ratio)

    #6: 멀티 GPU를 사용하는 경우 각 GPU에 batch size를 분할해준다.
    #   만약 총 Batch size가 맞지 않으면 뭔가 잘못된 것이므로 프로그램 종료.

    if args.batch_alloc is not None:
        args.batch_alloc = [int(x) for x in args.batch_alloc.split(',')]
        if sum(args.batch_alloc) != args.batch_size:
            print(
                'Error: Batch allocation (%s) does not sum to batch size (%s).'
                % (args.batch_alloc, args.batch_size))
            exit(-1)

    #7: 현재까지 설정된 net과 loss 함수를 엮어 더 통합된 net으로 만듬.
    #   이제 net을 호출하면, bbox를 detection하고, fast nms를 거쳐 한 번
    #   필터링을 한 후, ground truth와 비교하여 loss를 계산하고, 이 과정을
    #   멀티 GPU일 경우 알아서 각 device에 작업을 분할해준다.
    #   yolact_net은 net에 포함된 yolact()만을 가리킨다.
    net = CustomDataParallel(NetLoss(net, criterion))
    if args.cuda:
        net = net.cuda()

    #8: yolact_net의 batch_normalization layer를 모두 false로 만든 뒤에
    #   0만을 가지고 있는 zero_tensor를 모델에 통과시켜, 파라미터를 초기화시켜준다.
    #   그 후에 다시 batch_normalization layer를 train모드로 바꿔준다.
    #   굳이 이런 과정을 거치는 이유는 저자가 batch_normalization에 미리 넣어놓은
    #  평균/분산 값은 초기화하고 싶지 않기 때문이다.
    if not cfg.freeze_bn:
        yolact_net.freeze_bn()  # Freeze bn so we don't kill our means
    (torch.zeros(1, 3, cfg.max_size, cfg.max_size).cuda())
    if not cfg.freeze_bn: yolact_net.freeze_bn(True)

    #9: loss counters
    #   bbox의 위치에 대한 loss와, class confidence에 대한 loss 를 담을 변수를 생성하고,
    #   batch_size와 dataset의 크기에 맞는 1 epoch의 size와 몇 epoch를 돌려야하는지 구한다.
    loc_loss = 0
    conf_loss = 0
    iteration = max(args.start_iter, 0)  #cw : 음수입력을 허용치 않기 위해... GOOD
    last_time = time.time()

    epoch_size = len(dataset) // args.batch_size
    num_epochs = math.ceil(cfg.max_iter / epoch_size)

    #10:Which learning rate adjustment step are we on? lr' = lr * gamma ^ step_index
    #   step_index는 learning rate decay를 위해 사용하는 index이다.
    #   data_loader는 train중에 순서대로 데이터셋을 준비해서 넘겨주는 class이다.
    #   여기서 객체를 만들어 저장한다.
    step_index = 0

    data_loader = data.DataLoader(dataset,
                                  args.batch_size,
                                  num_workers=args.num_workers,
                                  shuffle=True,
                                  collate_fn=detection_collate,
                                  pin_memory=True)

    #11:특정 epoch와 iteration에 도달했을 때, 중간 과정을 save_path에 저장하기 위한
    #  람다 함수를 정의하고, time_avg와 loss_avg는 MovingAverage 클래스의 객체로써
    #  훈련 중간 과정의 loss를 이동평균 값으로 보여주기 위해 선언되는 객체이다.
    save_path = lambda epoch, iteration: SavePath(
        cfg.name, epoch, iteration).get_path(root=args.save_folder)
    time_avg = MovingAverage()

    global loss_types  # Forms the print order
    loss_avgs = {k: MovingAverage(100) for k in loss_types}

    #12: main train이 시작되는 부분(#A ~ #F)
    print('Begin training!')
    print()

    # A
    #    try-except를 사용하여 ctrl+c(keyboardInterrupt)를 통해
    #   훈련을 중단하고 진행내용은 저장할 수 있다.
    #   중단지점부터 재시작하고 싶으면 train.py실행 시 --resume인자를 사용한다.
    try:
        #9에서 계산된 num_epochs만큼 반복.
        for epoch in range(num_epochs):
            # B
            #   --resume을 이용해 시작했다면, 재시작 iter에 도달할 때까지 continue,
            #   또한 data_loader에서 data를 불러오며 loss를 계산하는데,
            #   도중에 목표 iteration에 도달했으면 break하여 1 epoch를 종료한다.
            if (epoch + 1) * epoch_size < iteration:
                continue

            for datum in data_loader:
                # 목표한만큼 훈련이 되었다면, 종료한다.
                # Stop if we've reached an epoch if we're resuming from start_iter
                if iteration == (epoch + 1) * epoch_size:
                    break

                # 목표로 설정된 반복횟수가 max_iter보다 크면 max_iter에서 훈련을 마친다.
                # Stop at the configured number of iterations even if mid-epoch
                if iteration == cfg.max_iter:
                    break

                # 특정 iteration에 config값이 바뀌도록 할 경우의 작업을 수행한다.
                # Change a config setting if we've reached the specified iteration
                changed = False
                for change in cfg.delayed_settings:
                    if iteration >= change[0]:
                        changed = True
                        cfg.replace(change[1])

                        # Reset the loss averages because things might have changed
                        for avg in loss_avgs:
                            avg.reset()

                # If a config setting was changed, remove it from the list so we don't keep checking
                if changed:
                    cfg.delayed_settings = [
                        x for x in cfg.delayed_settings if x[0] > iteration
                    ]

                # C
                #   [learning rate 조정]

                # train시작한지 얼마 안되었을 경우(lr_warmup_until기준) 훈련을 조금 가속시키기 위해 조정.
                # Warm up by linearly interpolating the learning rate from some smaller value
                if cfg.lr_warmup_until > 0 and iteration <= cfg.lr_warmup_until:
                    set_lr(optimizer, (args.lr - cfg.lr_warmup_init) *
                           (iteration / cfg.lr_warmup_until) +
                           cfg.lr_warmup_init)

                #   특정 iteration에 도달할 때마다 learning rate decay수행.
                #   Adjust the learning rate at the given iterations, but also if we resume from past that iteration
                while step_index < len(
                        cfg.lr_steps
                ) and iteration >= cfg.lr_steps[step_index]:
                    step_index += 1
                    set_lr(optimizer, args.lr * (args.gamma**step_index))

                # D
                #   loss 함수 계산.

                # Zero the grad to get ready to compute gradients
                optimizer.zero_grad()

                #   Forward Propagation을 수행하고 수행 결과로 loss 함수를 통해 1 iteration의 loss를 계산한다.
                #   구체적인 동작은 Backbone.py의 resnet101, yolact.py의 yolact, MultiBoxLoss.py의 MultiBoxLoss 클래스를 모두 보아야 한다.
                #   (see CustomDataParallel and NetLoss)
                losses = net(datum)

                losses = {k: (v).mean()
                          for k, v in losses.items()
                          }  # Mean here because Dataparallel
                loss = sum([losses[k] for k in losses])

                # no_inf_mean removes some components from the loss, so make sure to backward through all of it
                # all_loss = sum([v.mean() for v in losses.values()])

                # E
                #   Backward Propagation을 수행하고,
                #   계산가능한 값일 경우, optimizer.step()을 통해 parameters에 적용

                # Backprop
                loss.backward()

                # Do this to free up vram even if loss is not finite
                if torch.isfinite(loss).item():
                    optimizer.step()

                # F
                #   train진행 과정에서 소요 시간과, 중간 loss값을 출력하여 중간 성과를
                #   파악 할 수 있도록 해주는 파트.

                # Add the loss to the moving average for bookkeeping
                for k in losses:
                    loss_avgs[k].add(losses[k].item())

                cur_time = time.time()
                elapsed = cur_time - last_time
                last_time = cur_time

                # Exclude graph setup from the timing information
                if iteration != args.start_iter:
                    time_avg.add(elapsed)

                if iteration % 10 == 0:
                    eta_str = str(
                        datetime.timedelta(seconds=(cfg.max_iter - iteration) *
                                           time_avg.get_avg())).split('.')[0]

                    total = sum([loss_avgs[k].get_avg() for k in losses])
                    loss_labels = sum([[k, loss_avgs[k].get_avg()]
                                       for k in loss_types if k in losses], [])

                    print(('[%3d] %7d ||' + (' %s: %.3f |' * len(losses)) +
                           ' T: %.3f || ETA: %s || timer: %.3f') %
                          tuple([epoch, iteration] + loss_labels +
                                [total, eta_str, elapsed]),
                          flush=True)

                #   log를 파일로 기록
                if args.log:
                    precision = 5
                    loss_info = {
                        k: round(losses[k].item(), precision)
                        for k in losses
                    }
                    loss_info['T'] = round(loss.item(), precision)

                    if args.log_gpu:
                        log.log_gpu_stats = (iteration % 10 == 0
                                             )  # nvidia-smi is sloooow

                    log.log('train',
                            loss=loss_info,
                            epoch=epoch,
                            iter=iteration,
                            lr=round(cur_lr, 10),
                            elapsed=elapsed)

                    log.log_gpu_stats = args.log_gpu
                # ~F

                # 1번 반복하면, 1 iter증가.
                iteration += 1

                #   주기마다 진행과정을 저장하는 작업 수행.
                if iteration % args.save_interval == 0 and iteration != args.start_iter:
                    if args.keep_latest:
                        latest = SavePath.get_latest(args.save_folder,
                                                     cfg.name)

                    print('Saving state, iter:', iteration)
                    yolact_net.save_weights(save_path(epoch, iteration))

                    if args.keep_latest and latest is not None:
                        if args.keep_latest_interval <= 0 or iteration % args.keep_latest_interval != args.save_interval:
                            print('Deleting old save...')
                            os.remove(latest)

            # train-validation으로 작업을 수행하는 경우,
            # 1 epoch를 돌렸을 때 validation 주기에 도달한 epoch였으면 validate 1회 진행하여 mAP측정.
            if args.validation_epoch > 0:
                if epoch % args.validation_epoch == 0 and epoch > 0:
                    compute_validation_map(epoch, iteration, yolact_net,
                                           val_dataset,
                                           log if args.log else None)

        # Compute validation mAP after training is finished
        compute_validation_map(epoch, iteration, yolact_net, val_dataset,
                               log if args.log else None)

    #13: Ctrl + c를 이용하여 훈련을 중단했을 경우, save_foler에 weights를 저장하고 중단하여
    #   다음에 다시 재시작할 수 있도록 한다.
    except KeyboardInterrupt:
        if args.interrupt:
            print('Stopping early. Saving network...')

            # Delete previous copy of the interrupted network so we don't spam the weights folder
            SavePath.remove_interrupt(args.save_folder)

            yolact_net.save_weights(
                save_path(epoch,
                          repr(iteration) + '_interrupt'))
        exit()

    yolact_net.save_weights(save_path(epoch, iteration))
示例#3
0
        print(make_row([iou_type] + ['%.2f' % x if x < 100 else '%.1f' % x for x in all_maps[iou_type].values()]))
    print(make_sep(len(all_maps['box']) + 1))
    print()



if __name__ == '__main__':
    parse_args()

    if args.config is not None:
        set_cfg(args.config)

    if args.trained_model == 'interrupt':
        args.trained_model = SavePath.get_interrupt('weights/')
    elif args.trained_model == 'latest':
        args.trained_model = SavePath.get_latest('weights/', cfg.name)

    if args.config is None:
        model_path = SavePath.from_str(args.trained_model)
        # TODO: Bad practice? Probably want to do a name lookup instead.
        args.config = model_path.model_name + '_config'
        print('Config not specified. Parsed %s from the file name.\n' % args.config)
        set_cfg(args.config)

    if args.detect:
        cfg.eval_mask_branch = False

    if args.dataset is not None:
        set_dataset(args.dataset)

    with torch.no_grad():
示例#4
0
def train(rank, args):
    if args.num_gpus > 1:
        multi_gpu_rescale(args)
    if rank == 0:
        if not os.path.exists(args.save_folder):
            os.mkdir(args.save_folder)

    # set up logger
    setup_logger(output=os.path.join(args.log_folder, cfg.name),
                 distributed_rank=rank)
    logger = logging.getLogger("yolact.train")

    w = SummaryHelper(distributed_rank=rank,
                      log_dir=os.path.join(args.log_folder, cfg.name))
    w.add_text("argv", " ".join(sys.argv))
    logger.info("Args: {}".format(" ".join(sys.argv)))
    import git
    with git.Repo(search_parent_directories=True) as repo:
        w.add_text("git_hash", repo.head.object.hexsha)
        logger.info("git hash: {}".format(repo.head.object.hexsha))

    try:
        logger.info("Initializing torch.distributed backend...")
        dist.init_process_group(backend='nccl',
                                init_method=args.dist_url,
                                world_size=args.num_gpus,
                                rank=rank)
    except Exception as e:
        logger.error("Process group URL: {}".format(args.dist_url))
        raise e

    dist.barrier()

    if torch.cuda.device_count() > 1:
        logger.info('Multiple GPUs detected! Turning off JIT.')

    collate_fn = detection_collate
    if cfg.dataset.name == 'YouTube VIS':
        dataset = YoutubeVIS(image_path=cfg.dataset.train_images,
                             info_file=cfg.dataset.train_info,
                             configs=cfg.dataset,
                             transform=SSDAugmentationVideo(MEANS))

        if cfg.dataset.joint == 'coco':
            joint_dataset = COCODetection(
                image_path=cfg.joint_dataset.train_images,
                info_file=cfg.joint_dataset.train_info,
                transform=SSDAugmentation(MEANS))
            joint_collate_fn = detection_collate

        if args.validation_epoch > 0:
            setup_eval()
            val_dataset = YoutubeVIS(image_path=cfg.dataset.valid_images,
                                     info_file=cfg.dataset.valid_info,
                                     configs=cfg.dataset,
                                     transform=BaseTransformVideo(MEANS))
        collate_fn = collate_fn_youtube_vis

    elif cfg.dataset.name == 'FlyingChairs':
        dataset = FlyingChairs(image_path=cfg.dataset.trainval_images,
                               info_file=cfg.dataset.trainval_info)

        collate_fn = collate_fn_flying_chairs

    else:
        dataset = COCODetection(image_path=cfg.dataset.train_images,
                                info_file=cfg.dataset.train_info,
                                transform=SSDAugmentation(MEANS))

        if args.validation_epoch > 0:
            setup_eval()
            val_dataset = COCODetection(image_path=cfg.dataset.valid_images,
                                        info_file=cfg.dataset.valid_info,
                                        transform=BaseTransform(MEANS))

    # Set cuda device early to avoid duplicate model in master GPU
    if args.cuda:
        torch.cuda.set_device(rank)

    # Parallel wraps the underlying module, but when saving and loading we don't want that
    yolact_net = Yolact()
    net = yolact_net
    net.train()

    # I don't use the timer during training (I use a different timing method).
    # Apparently there's a race condition with multiple GPUs.

    # use timer for experiments
    timer.disable_all()

    # Both of these can set args.resume to None, so do them before the check
    if args.resume == 'interrupt':
        args.resume = SavePath.get_interrupt(args.save_folder)
    elif args.resume == 'latest':
        args.resume = SavePath.get_latest(args.save_folder, cfg.name)

    if args.resume is not None:
        logger.info('Resuming training, loading {}...'.format(args.resume))
        yolact_net.load_weights(args.resume, args=args)

        if args.start_iter == -1:
            args.start_iter = SavePath.from_str(args.resume).iteration
    else:
        logger.info('Initializing weights...')
        yolact_net.init_weights(backbone_path=args.save_folder +
                                cfg.backbone.path)

    if cfg.flow.train_flow:
        criterion = OpticalFlowLoss()

    else:
        criterion = MultiBoxLoss(num_classes=cfg.num_classes,
                                 pos_threshold=cfg.positive_iou_threshold,
                                 neg_threshold=cfg.negative_iou_threshold,
                                 negpos_ratio=3)

    if args.cuda:
        cudnn.benchmark = True
        net.cuda(rank)
        criterion.cuda(rank)
        net = nn.parallel.DistributedDataParallel(net,
                                                  device_ids=[rank],
                                                  output_device=rank,
                                                  broadcast_buffers=False,
                                                  find_unused_parameters=True)
        # net       = nn.DataParallel(net).cuda()
        # criterion = nn.DataParallel(criterion).cuda()

    optimizer = optim.SGD(filter(lambda x: x.requires_grad, net.parameters()),
                          lr=args.lr,
                          momentum=args.momentum,
                          weight_decay=args.decay)

    # loss counters
    loc_loss = 0
    conf_loss = 0
    iteration = max(args.start_iter, 0)
    w.set_step(iteration)
    last_time = time.time()

    epoch_size = len(dataset) // args.batch_size // args.num_gpus
    num_epochs = math.ceil(cfg.max_iter / epoch_size)

    # Which learning rate adjustment step are we on? lr' = lr * gamma ^ step_index
    step_index = 0

    from data.sampler_utils import InfiniteSampler, build_batch_data_sampler

    infinite_sampler = InfiniteSampler(dataset,
                                       seed=args.random_seed,
                                       num_replicas=args.num_gpus,
                                       rank=rank,
                                       shuffle=True)
    train_sampler = build_batch_data_sampler(infinite_sampler,
                                             images_per_batch=args.batch_size)

    data_loader = data.DataLoader(
        dataset,
        num_workers=args.num_workers,
        collate_fn=collate_fn,
        multiprocessing_context="fork" if args.num_workers > 1 else None,
        batch_sampler=train_sampler)
    data_loader_iter = iter(data_loader)

    if cfg.dataset.joint:
        joint_infinite_sampler = InfiniteSampler(joint_dataset,
                                                 seed=args.random_seed,
                                                 num_replicas=args.num_gpus,
                                                 rank=rank,
                                                 shuffle=True)
        joint_train_sampler = build_batch_data_sampler(
            joint_infinite_sampler, images_per_batch=args.batch_size)
        joint_data_loader = data.DataLoader(
            joint_dataset,
            num_workers=args.num_workers,
            collate_fn=joint_collate_fn,
            multiprocessing_context="fork" if args.num_workers > 1 else None,
            batch_sampler=joint_train_sampler)
        joint_data_loader_iter = iter(joint_data_loader)

    dist.barrier()

    save_path = lambda epoch, iteration: SavePath(
        cfg.name, epoch, iteration).get_path(root=args.save_folder)
    time_avg = MovingAverage()
    data_time_avg = MovingAverage(10)

    global loss_types  # Forms the print order
    loss_avgs = {k: MovingAverage(100) for k in loss_types}

    def backward_and_log(prefix,
                         net_outs,
                         targets,
                         masks,
                         num_crowds,
                         extra_loss=None):
        optimizer.zero_grad()

        out = net_outs["pred_outs"]
        wrapper = ScatterWrapper(targets, masks, num_crowds)
        losses = criterion(out, wrapper, wrapper.make_mask())

        losses = {k: v.mean()
                  for k, v in losses.items()}  # Mean here because Dataparallel

        if extra_loss is not None:
            assert type(extra_loss) == dict
            losses.update(extra_loss)

        loss = sum([losses[k] for k in losses])

        # Backprop
        loss.backward()  # Do this to free up vram even if loss is not finite
        if torch.isfinite(loss).item():
            optimizer.step()

        # Add the loss to the moving average for bookkeeping
        for k in losses:
            loss_avgs[k].add(losses[k].item())
            w.add_scalar('{prefix}/{key}'.format(prefix=prefix, key=k),
                         losses[k].item())

        return losses

    logger.info('Begin training!')
    # try-except so you can use ctrl+c to save early and stop training
    try:
        for epoch in range(num_epochs):
            # Resume from start_iter
            if (epoch + 1) * epoch_size < iteration:
                continue

            while True:
                data_start_time = time.perf_counter()
                datum = next(data_loader_iter)
                dist.barrier()
                data_end_time = time.perf_counter()
                data_time = data_end_time - data_start_time
                if iteration != args.start_iter:
                    data_time_avg.add(data_time)
                # Stop if we've reached an epoch if we're resuming from start_iter
                if iteration == (epoch + 1) * epoch_size:
                    break

                # Stop at the configured number of iterations even if mid-epoch
                if iteration == cfg.max_iter:
                    break

                # Change a config setting if we've reached the specified iteration
                changed = False
                for change in cfg.delayed_settings:
                    if iteration >= change[0]:
                        changed = True
                        cfg.replace(change[1])

                        # Reset the loss averages because things might have changed
                        for avg in loss_avgs:
                            avg.reset()

                # If a config setting was changed, remove it from the list so we don't keep checking
                if changed:
                    cfg.delayed_settings = [
                        x for x in cfg.delayed_settings if x[0] > iteration
                    ]

                # Warm up by linearly interpolating the learning rate from some smaller value
                if cfg.lr_warmup_until > 0 and iteration <= cfg.lr_warmup_until and cfg.lr_warmup_init < args.lr:
                    set_lr(optimizer, (args.lr - cfg.lr_warmup_init) *
                           (iteration / cfg.lr_warmup_until) +
                           cfg.lr_warmup_init)

                elif cfg.lr_schedule == 'cosine':
                    set_lr(
                        optimizer,
                        args.lr *
                        ((math.cos(math.pi * iteration / cfg.max_iter) + 1.) *
                         .5))

                # Adjust the learning rate at the given iterations, but also if we resume from past that iteration
                while cfg.lr_schedule == 'step' and step_index < len(
                        cfg.lr_steps
                ) and iteration >= cfg.lr_steps[step_index]:
                    step_index += 1
                    set_lr(optimizer, args.lr * (args.gamma**step_index))

                global lr
                w.add_scalar('meta/lr', lr)

                if cfg.dataset.name == "FlyingChairs":
                    imgs_1, imgs_2, flows = prepare_flow_data(datum)
                    net_outs = net(None, extras=(imgs_1, imgs_2))
                    # Compute Loss
                    optimizer.zero_grad()

                    losses = criterion(net_outs, flows)

                    losses = {k: v.mean()
                              for k, v in losses.items()
                              }  # Mean here because Dataparallel
                    loss = sum([losses[k] for k in losses])

                    # Backprop
                    loss.backward(
                    )  # Do this to free up vram even if loss is not finite
                    if torch.isfinite(loss).item():
                        optimizer.step()

                    # Add the loss to the moving average for bookkeeping
                    for k in losses:
                        loss_avgs[k].add(losses[k].item())
                        w.add_scalar('loss/%s' % k, losses[k].item())

                elif cfg.dataset.joint or not cfg.dataset.is_video:
                    if cfg.dataset.joint:
                        joint_datum = next(joint_data_loader_iter)
                        dist.barrier()
                        # Load training data
                        # Note, for training on multiple gpus this will use the custom replicate and gather I wrote up there
                        images, targets, masks, num_crowds = prepare_data(
                            joint_datum)
                    else:
                        images, targets, masks, num_crowds = prepare_data(
                            datum)
                    extras = {
                        "backbone": "full",
                        "interrupt": False,
                        "moving_statistics": {
                            "aligned_feats": []
                        }
                    }
                    net_outs = net(images, extras=extras)
                    out = net_outs["pred_outs"]
                    # Compute Loss
                    optimizer.zero_grad()

                    wrapper = ScatterWrapper(targets, masks, num_crowds)
                    losses = criterion(out, wrapper, wrapper.make_mask())

                    losses = {k: v.mean()
                              for k, v in losses.items()
                              }  # Mean here because Dataparallel
                    loss = sum([losses[k] for k in losses])

                    # Backprop
                    loss.backward(
                    )  # Do this to free up vram even if loss is not finite
                    if torch.isfinite(loss).item():
                        optimizer.step()

                    # Add the loss to the moving average for bookkeeping
                    for k in losses:
                        loss_avgs[k].add(losses[k].item())
                        w.add_scalar('joint/%s' % k, losses[k].item())

                # Forward Pass
                if cfg.dataset.is_video:
                    # reference frames
                    references = []
                    moving_statistics = {"aligned_feats": [], "conf_hist": []}
                    for idx, frame in enumerate(datum[:0:-1]):
                        images, annots = frame

                        extras = {
                            "backbone": "full",
                            "interrupt": True,
                            "keep_statistics": True,
                            "moving_statistics": moving_statistics
                        }

                        with torch.no_grad():
                            net_outs = net(images, extras=extras)

                        moving_statistics["feats"] = net_outs["feats"]
                        moving_statistics["lateral"] = net_outs["lateral"]

                        keys_to_save = ("outs_phase_1", "outs_phase_2")
                        for key in set(net_outs.keys()) - set(keys_to_save):
                            del net_outs[key]
                        references.append(net_outs)

                    # key frame with annotation, but not compute full backbone
                    frame = datum[0]
                    images, annots = frame
                    frame = (
                        images,
                        annots,
                    )
                    images, targets, masks, num_crowds = prepare_data(frame)

                    extras = {
                        "backbone": "full",
                        "interrupt": not cfg.flow.base_backward,
                        "moving_statistics": moving_statistics
                    }
                    gt_net_outs = net(images, extras=extras)
                    if cfg.flow.base_backward:
                        losses = backward_and_log("compute", gt_net_outs,
                                                  targets, masks, num_crowds)

                    keys_to_save = ("outs_phase_1", "outs_phase_2")
                    for key in set(gt_net_outs.keys()) - set(keys_to_save):
                        del gt_net_outs[key]

                    # now do the warp
                    if len(references) > 0:
                        reference_frame = references[0]
                        extras = {
                            "backbone": "partial",
                            "moving_statistics": moving_statistics
                        }

                        net_outs = net(images, extras=extras)
                        extra_loss = yolact_net.extra_loss(
                            net_outs, gt_net_outs)

                        losses = backward_and_log("warp",
                                                  net_outs,
                                                  targets,
                                                  masks,
                                                  num_crowds,
                                                  extra_loss=extra_loss)

                cur_time = time.time()
                elapsed = cur_time - last_time
                last_time = cur_time
                w.add_scalar('meta/data_time', data_time)
                w.add_scalar('meta/iter_time', elapsed)

                # Exclude graph setup from the timing information
                if iteration != args.start_iter:
                    time_avg.add(elapsed)

                if iteration % 10 == 0:
                    eta_str = str(
                        datetime.timedelta(seconds=(cfg.max_iter - iteration) *
                                           time_avg.get_avg())).split('.')[0]
                    if torch.cuda.is_available():
                        max_mem_mb = torch.cuda.max_memory_allocated(
                        ) / 1024.0 / 1024.0
                        # torch.cuda.reset_max_memory_allocated()
                    else:
                        max_mem_mb = None

                    logger.info("""\
eta: {eta}  epoch: {epoch}  iter: {iter}  \
{losses}  {loss_total}  \
time: {time}  data_time: {data_time}  lr: {lr}  {memory}\
""".format(eta=eta_str,
                    epoch=epoch,
                    iter=iteration,
                    losses="  ".join([
                    "{}: {:.3f}".format(k, loss_avgs[k].get_avg()) for k in losses
                    ]),
                    loss_total="T: {:.3f}".format(
                    sum([loss_avgs[k].get_avg() for k in losses])),
                    data_time="{:.3f}".format(data_time_avg.get_avg()),
                    time="{:.3f}".format(elapsed),
                    lr="{:.6f}".format(lr),
                    memory="max_mem: {:.0f}M".format(max_mem_mb)))

                if rank == 0 and iteration % 100 == 0:

                    if cfg.flow.train_flow:
                        import flowiz as fz
                        from layers.warp_utils import deform_op
                        tgt_size = (64, 64)
                        flow_size = flows.size()[2:]
                        vis_data = []
                        for pred_flow in net_outs:
                            vis_data.append(pred_flow)

                        deform_gt = deform_op(imgs_2, flows)
                        flows_pred = [
                            F.interpolate(x,
                                          size=flow_size,
                                          mode='bilinear',
                                          align_corners=False)
                            for x in net_outs
                        ]
                        deform_preds = [
                            deform_op(imgs_2, x) for x in flows_pred
                        ]

                        vis_data.append(
                            F.interpolate(flows, size=tgt_size, mode='area'))

                        vis_data = [
                            F.interpolate(flow[:1], size=tgt_size)
                            for flow in vis_data
                        ]
                        vis_data = [
                            fz.convert_from_flow(
                                flow[0].data.cpu().numpy().transpose(
                                    1, 2, 0)).transpose(
                                        2, 0, 1).astype('float32') / 255
                            for flow in vis_data
                        ]

                        def convert_image(image):
                            image = F.interpolate(image,
                                                  size=tgt_size,
                                                  mode='area')
                            image = image[0]
                            image = image.data.cpu().numpy()
                            image = image[::-1]
                            image = image.transpose(1, 2, 0)
                            image = image * np.array(STD) + np.array(MEANS)
                            image = image.transpose(2, 0, 1)
                            image = image / 255
                            image = np.clip(image, -1, 1)
                            image = image[::-1]
                            return image

                        vis_data.append(convert_image(imgs_1))
                        vis_data.append(convert_image(imgs_2))
                        vis_data.append(convert_image(deform_gt))
                        vis_data.extend(
                            [convert_image(x) for x in deform_preds])

                        vis_data_stack = np.stack(vis_data, axis=0)
                        w.add_images("preds_flow", vis_data_stack)

                    elif cfg.flow.warp_mode == "flow":
                        import flowiz as fz
                        tgt_size = (64, 64)
                        vis_data = []
                        for pred_flow, _, _ in net_outs["preds_flow"]:
                            vis_data.append(pred_flow)

                        vis_data = [
                            F.interpolate(flow[:1], size=tgt_size)
                            for flow in vis_data
                        ]
                        vis_data = [
                            fz.convert_from_flow(
                                flow[0].data.cpu().numpy().transpose(
                                    1, 2, 0)).transpose(
                                        2, 0, 1).astype('float32') / 255
                            for flow in vis_data
                        ]
                        input_image = F.interpolate(images,
                                                    size=tgt_size,
                                                    mode='area')
                        input_image = input_image[0]
                        input_image = input_image.data.cpu().numpy()
                        input_image = input_image.transpose(1, 2, 0)
                        input_image = input_image * np.array(
                            STD[::-1]) + np.array(MEANS[::-1])
                        input_image = input_image.transpose(2, 0, 1)
                        input_image = input_image / 255
                        input_image = np.clip(input_image, -1, 1)
                        vis_data.append(input_image)

                        vis_data_stack = np.stack(vis_data, axis=0)
                        w.add_images("preds_flow", vis_data_stack)

                iteration += 1
                w.set_step(iteration)

                if rank == 0 and iteration % args.save_interval == 0 and iteration != args.start_iter:
                    if args.keep_latest:
                        latest = SavePath.get_latest(args.save_folder,
                                                     cfg.name)

                    logger.info('Saving state, iter: {}'.format(iteration))
                    yolact_net.save_weights(save_path(epoch, iteration))

                    if args.keep_latest and latest is not None:
                        if args.keep_latest_interval <= 0 or iteration % args.keep_latest_interval != args.save_interval:
                            logger.info('Deleting old save...')
                            os.remove(latest)

            # This is done per epoch
            if args.validation_epoch > 0:
                if epoch % args.validation_epoch == 0 and epoch > 0:
                    if rank == 0:
                        compute_validation_map(yolact_net, val_dataset)
                    dist.barrier()

    except KeyboardInterrupt:
        if args.interrupt_no_save:
            logger.info('No save on interrupt, just exiting...')
        elif rank == 0:
            print('Stopping early. Saving network...')
            # Delete previous copy of the interrupted network so we don't spam the weights folder
            SavePath.remove_interrupt(args.save_folder)

            yolact_net.save_weights(
                save_path(epoch,
                          repr(iteration) + '_interrupt'))
        return

    if rank == 0:
        yolact_net.save_weights(save_path(epoch, iteration))
示例#5
0
def train():
    if not os.path.exists(args.save_folder):
        os.mkdir(args.save_folder)

    dataset = COCODetection(image_path=cfg.dataset.train_images,
                            info_file=cfg.dataset.train_info,
                            transform=SSDAugmentation(MEANS))

    if args.validation_epoch > 0:
        setup_eval()
        val_dataset = COCODetection(image_path=cfg.dataset.valid_images,
                                    info_file=cfg.dataset.valid_info,
                                    transform=BaseTransform(MEANS))

    # Parallel wraps the underlying module, but when saving and loading we don't want that
    yolact_net = Yolact()
    net = yolact_net
    net.train()

    # Both of these can set args.resume to None, so do them before the check
    if args.resume == 'interrupt':
        args.resume = SavePath.get_interrupt(args.save_folder)
    elif args.resume == 'latest':
        args.resume = SavePath.get_latest(args.save_folder, cfg.name)

    if args.resume is not None:
        print('Resuming training, loading {}...'.format(args.resume))
        yolact_net.load_weights(args.resume)

        if args.start_iter == -1:
            args.start_iter = SavePath.from_str(args.resume).iteration
    else:
        print('Initializing weights...')
        yolact_net.init_weights(backbone_path=args.save_folder +
                                cfg.backbone.path)

    optimizer = optim.SGD(net.parameters(),
                          lr=args.lr,
                          momentum=args.momentum,
                          weight_decay=args.decay)
    criterion = MultiBoxLoss(num_classes=cfg.num_classes,
                             pos_threshold=cfg.positive_iou_threshold,
                             neg_threshold=cfg.negative_iou_threshold,
                             negpos_ratio=3)

    if args.cuda:
        cudnn.benchmark = True
        net = nn.DataParallel(net).cuda()
        criterion = nn.DataParallel(criterion).cuda()

    # loss counters
    loc_loss = 0
    conf_loss = 0
    iteration = max(args.start_iter, 0)
    last_time = time.time()

    epoch_size = len(dataset) // args.batch_size
    num_epochs = math.ceil(cfg.max_iter / epoch_size)

    # Which learning rate adjustment step are we on? lr' = lr * gamma ^ step_index
    step_index = 0

    data_loader = data.DataLoader(dataset,
                                  args.batch_size,
                                  num_workers=args.num_workers,
                                  shuffle=True,
                                  collate_fn=detection_collate,
                                  pin_memory=True)

    save_path = lambda epoch, iteration: SavePath(
        cfg.name, epoch, iteration).get_path(root=args.save_folder)
    time_avg = MovingAverage()

    global loss_types  # Forms the print order
    loss_avgs = {k: MovingAverage(100) for k in loss_types}

    print('Begin training!')
    print()
    # try-except so you can use ctrl+c to save early and stop training
    try:
        for epoch in range(num_epochs):
            # Resume from start_iter
            if (epoch + 1) * epoch_size < iteration:
                continue

            for datum in data_loader:
                # Stop if we've reached an epoch if we're resuming from start_iter
                if iteration == (epoch + 1) * epoch_size:
                    break

                # Stop at the configured number of iterations even if mid-epoch
                if iteration == cfg.max_iter:
                    break

                # Change a config setting if we've reached the specified iteration
                changed = False
                for change in cfg.delayed_settings:
                    if iteration >= change[0]:
                        changed = True
                        cfg.replace(change[1])

                        # Reset the loss averages because things might have changed
                        for avg in loss_avgs:
                            avg.reset()

                # If a config setting was changed, remove it from the list so we don't keep checking
                if changed:
                    cfg.delayed_settings = [
                        x for x in cfg.delayed_settings if x[0] > iteration
                    ]

                # Warm up by linearly interpolating the learning rate from some smaller value
                if cfg.lr_warmup_until > 0 and iteration <= cfg.lr_warmup_until:
                    set_lr(optimizer, (args.lr - cfg.lr_warmup_init) *
                           (iteration / cfg.lr_warmup_until) +
                           cfg.lr_warmup_init)

                # Adjust the learning rate at the given iterations, but also if we resume from past that iteration
                while step_index < len(
                        cfg.lr_steps
                ) and iteration >= cfg.lr_steps[step_index]:
                    step_index += 1
                    set_lr(optimizer, args.lr * (args.gamma**step_index))

                # Load training data
                # Note, for training on multiple gpus this will use the custom replicate and gather I wrote up there
                images, targets, masks, num_crowds = prepare_data(datum)

                # Forward Pass
                out = net(images)

                # Compute Loss
                optimizer.zero_grad()

                wrapper = ScatterWrapper(targets, masks, num_crowds)
                losses = criterion(out, wrapper, wrapper.make_mask())

                losses = {k: v.mean()
                          for k, v in losses.items()
                          }  # Mean here because Dataparallel
                loss = sum([losses[k] for k in losses])

                # Backprop
                loss.backward(
                )  # Do this to free up vram even if loss is not finite
                if torch.isfinite(loss).item():
                    optimizer.step()

                # Add the loss to the moving average for bookkeeping
                for k in losses:
                    loss_avgs[k].add(losses[k].item())

                cur_time = time.time()
                elapsed = cur_time - last_time
                last_time = cur_time

                # Exclude graph setup from the timing information
                if iteration != args.start_iter:
                    time_avg.add(elapsed)

                if iteration % 10 == 0:
                    eta_str = str(
                        datetime.timedelta(seconds=(cfg.max_iter - iteration) *
                                           time_avg.get_avg())).split('.')[0]

                    total = sum([loss_avgs[k].get_avg() for k in losses])
                    loss_labels = sum([[k, loss_avgs[k].get_avg()]
                                       for k in loss_types if k in losses], [])

                    print(('[%3d] %7d ||' + (' %s: %.3f |' * len(losses)) +
                           ' T: %.3f || ETA: %s || timer: %.3f') %
                          tuple([epoch, iteration] + loss_labels +
                                [total, eta_str, elapsed]),
                          flush=True)

                iteration += 1

                if iteration % args.save_interval == 0 and iteration != args.start_iter:
                    if args.keep_latest:
                        latest = SavePath.get_latest(args.save_folder,
                                                     cfg.name)

                    print('Saving state, iter:', iteration)
                    yolact_net.save_weights(save_path(epoch, iteration))

                    if args.keep_latest and latest is not None:
                        if args.keep_latest_interval <= 0 or iteration % args.keep_latest_interval != args.save_interval:
                            print('Deleting old save...')
                            os.remove(latest)

            # This is done per epoch
            if args.validation_epoch > 0:
                if epoch % args.validation_epoch == 0 and epoch > 0:
                    compute_validation_map(yolact_net, val_dataset)
    except KeyboardInterrupt:
        print('Stopping early. Saving network...')

        # Delete previous copy of the interrupted network so we don't spam the weights folder
        SavePath.remove_interrupt(args.save_folder)

        yolact_net.save_weights(
            save_path(epoch,
                      repr(iteration) + '_interrupt'))
        exit()

    yolact_net.save_weights(save_path(epoch, iteration))
示例#6
0
def train():
    if not os.path.exists(args.save_folder):
        os.mkdir(args.save_folder)

    dataset = COCODetection(image_path=cfg.dataset.train_images,
                            info_file=cfg.dataset.train_info,
                            transform=SSDAugmentation(MEANS))
    
    if args.validation_epoch > 0:
        setup_eval()
        val_dataset = COCODetection(image_path=cfg.dataset.valid_images,
                                    info_file=cfg.dataset.valid_info,
                                    transform=BaseTransform(MEANS))

    # Parallel wraps the underlying module, but when saving and loading we don't want that
    yolact_net = Yolact()
    net = yolact_net
    net.train()
    print('\n--- Generator created! ---')

    # NOTE
    # I maunally set the original image size and seg size as 138
    # might change in the future, for example 550
    if cfg.pred_seg:
        dis_size = 138
        dis_net  = Discriminator_Wgan(i_size = dis_size, s_size = dis_size)
        # Change the initialization inside the dis_net class inside 
        # set the dis net's initial parameter values
        # dis_net.apply(gan_init)
        dis_net.train()
        print('--- Discriminator created! ---\n')

    if args.log:
        log = Log(cfg.name, args.log_folder, dict(args._get_kwargs()),
            overwrite=(args.resume is None), log_gpu_stats=args.log_gpu)

    # I don't use the timer during training (I use a different timing method).
    # Apparently there's a race condition with multiple GPUs, so disable it just to be safe.
    timer.disable_all()

    # Both of these can set args.resume to None, so do them before the check    
    if args.resume == 'interrupt':
        args.resume = SavePath.get_interrupt(args.save_folder)
    elif args.resume == 'latest':
        args.resume = SavePath.get_latest(args.save_folder, cfg.name)

    if args.resume is not None:
        print('Resuming training, loading {}...'.format(args.resume))
        yolact_net.load_weights(args.resume)

        if args.start_iter == -1:
            args.start_iter = SavePath.from_str(args.resume).iteration
    else:
        print('Initializing weights...')
        yolact_net.init_weights(backbone_path=args.save_folder + cfg.backbone.path)

    # optimizer_gen = optim.SGD(net.parameters(), lr=args.lr, momentum=args.momentum,
    #                       weight_decay=args.decay)
    # if cfg.pred_seg:
    #     optimizer_dis = optim.SGD(dis_net.parameters(), lr=cfg.dis_lr, momentum=args.momentum,
    #                         weight_decay=args.decay)
    #     schedule_dis  = ReduceLROnPlateau(optimizer_dis, mode = 'min', patience=6, min_lr=1E-6)

    # NOTE: Using the Ranger Optimizer for the generator
    optimizer_gen     = Ranger(net.parameters(), lr = args.lr, weight_decay=args.decay)
    # optimizer_gen = optim.RMSprop(net.parameters(), lr = args.lr)

    # FIXME: Might need to modify the lr in the optimizer carefually
    # check this
    # def make_D_optimizer(cfg, model):
    # params = []
    # for key, value in model.named_parameters():
    #     if not value.requires_grad:
    #         continue
    #     lr = cfg.SOLVER.BASE_LR/5.0
    #     weight_decay = cfg.SOLVER.WEIGHT_DECAY
    #     if "bias" in key:
    #         lr = cfg.SOLVER.BASE_LR * cfg.SOLVER.BIAS_LR_FACTOR/5.0
    #         weight_decay = cfg.SOLVER.WEIGHT_DECAY_BIAS
    #     params += [{"params": [value], "lr": lr, "weight_decay": weight_decay}]

    # optimizer = torch.optim.SGD(params, lr, momentum=cfg.SOLVER.MOMENTUM)
    # return optimizer

    if cfg.pred_seg:
        optimizer_dis = optim.SGD(dis_net.parameters(), lr=cfg.dis_lr)
        # optimizer_dis = optim.RMSprop(dis_net.parameters(), lr = cfg.dis_lr)
        schedule_dis  = ReduceLROnPlateau(optimizer_dis, mode = 'min', patience=6, min_lr=1E-6)

    criterion     = MultiBoxLoss(num_classes=cfg.num_classes,
                                pos_threshold=cfg.positive_iou_threshold,
                                neg_threshold=cfg.negative_iou_threshold,
                                negpos_ratio=cfg.ohem_negpos_ratio, pred_seg=cfg.pred_seg)

    # criterion_dis = nn.BCELoss()
    # Take the advice from WGAN
    criterion_dis = DiscriminatorLoss_Maskrcnn()
    criterion_gen = GeneratorLoss_Maskrcnn()


    if args.batch_alloc is not None:
        # e.g. args.batch_alloc: 24,24
        args.batch_alloc = [int(x) for x in args.batch_alloc.split(',')]
        if sum(args.batch_alloc) != args.batch_size:
            print('Error: Batch allocation (%s) does not sum to batch size (%s).' % (args.batch_alloc, args.batch_size))
            exit(-1)

    net = CustomDataParallel(NetLoss(net, criterion, pred_seg=cfg.pred_seg))

    if args.cuda:
        net     = net.cuda()
        # NOTE
        if cfg.pred_seg:
            dis_net = nn.DataParallel(dis_net)
            dis_net = dis_net.cuda()
    
    # Initialize everything
    if not cfg.freeze_bn: yolact_net.freeze_bn() # Freeze bn so we don't kill our means
    yolact_net(torch.zeros(1, 3, cfg.max_size, cfg.max_size).cuda())

    if not cfg.freeze_bn: yolact_net.freeze_bn(True)

    # loss counters
    loc_loss = 0
    conf_loss = 0
    iteration = max(args.start_iter, 0)
    last_time = time.time()

    epoch_size = len(dataset) // args.batch_size
    num_epochs = math.ceil(cfg.max_iter / epoch_size)
    
    # Which learning rate adjustment step are we on? lr' = lr * gamma ^ step_index
    step_index = 0

    data_loader = data.DataLoader(dataset, args.batch_size,
                                  num_workers=args.num_workers,
                                  shuffle=True, collate_fn=detection_collate,
                                  pin_memory=True)
    # NOTE
    val_loader  = data.DataLoader(val_dataset, args.batch_size,
                                  num_workers=args.num_workers*2,
                                  shuffle=True, collate_fn=detection_collate,
                                  pin_memory=True)
    
    
    save_path = lambda epoch, iteration: SavePath(cfg.name, epoch, iteration).get_path(root=args.save_folder)
    time_avg = MovingAverage()

    global loss_types # Forms the print order
                      # TODO: global command can modify global variable inside of the function.
    loss_avgs  = { k: MovingAverage(100) for k in loss_types }

    # NOTE
    # Enable AMP
    amp_enable = cfg.amp
    scaler = torch.cuda.amp.GradScaler(enabled=amp_enable)

    print('Begin training!')
    print()
    # try-except so you can use ctrl+c to save early and stop training
    try:
        for epoch in range(num_epochs):
            # Resume from start_iter

            if (epoch+1)*epoch_size < iteration:
                continue
            
            for datum in data_loader:
                # Stop if we've reached an epoch if we're resuming from start_iter
                if iteration == (epoch+1)*epoch_size:
                    break
      
                # Stop at the configured number of iterations even if mid-epoch
                if iteration == cfg.max_iter:
                    break

                # Change a config setting if we've reached the specified iteration
                changed = False
                for change in cfg.delayed_settings:
                    if iteration >= change[0]:
                        changed = True
                        cfg.replace(change[1])

                        # Reset the loss averages because things might have changed
                        for avg in loss_avgs:
                            avg.reset()
                
                # If a config setting was changed, remove it from the list so we don't keep checking
                if changed:
                    cfg.delayed_settings = [x for x in cfg.delayed_settings if x[0] > iteration]

                # Warm up by linearly interpolating the learning rate from some smaller value
                if cfg.lr_warmup_until > 0 and iteration <= cfg.lr_warmup_until:
                    set_lr(optimizer_gen, (args.lr - cfg.lr_warmup_init) * (iteration / cfg.lr_warmup_until) + cfg.lr_warmup_init)

                # Adjust the learning rate at the given iterations, but also if we resume from past that iteration
                while step_index < len(cfg.lr_steps) and iteration >= cfg.lr_steps[step_index]:
                    step_index += 1
                    set_lr(optimizer_gen, args.lr * (args.gamma ** step_index))
                
                
                # NOTE
                if cfg.pred_seg:
                    # ====== GAN Train ======
                    # train the gen and dis in different iteration
                    # it_alter_period = iteration % (cfg.gen_iter + cfg.dis_iter)
                    # FIXME:
                    # present_time = time.time()
                    for _ in range(cfg.dis_iter):
                        # freeze_pretrain(yolact_net, freeze=False)
                        # freeze_pretrain(net, freeze=False)
                        # freeze_pretrain(dis_net, freeze=False)
                        # if it_alter_period == 0:
                        #     print('--- Generator     freeze   ---')
                        #     print('--- Discriminator training ---')

                        if cfg.amp:
                            with torch.cuda.amp.autocast():
                                # ----- Discriminator part -----
                                # seg_list  is the prediction mask
                                # can be regarded as generated images from YOLACT
                                # pred_list is the prediction label
                                # seg_list  dim: list of (138,138,instances)
                                # pred_list dim: list of (instances)
                                losses, seg_list, pred_list = net(datum)
                                seg_clas, mask_clas, b, seg_size = seg_mask_clas(seg_list, pred_list, datum)
                                
                                # input image size is [b, 3, 550, 550]
                                # downsample to       [b, 3, seg_h, seg_w]
                                image_list = [img.to(cuda0) for img in datum[0]]
                                image    = interpolate(torch.stack(image_list), size = seg_size, 
                                                            mode='bilinear',align_corners=False)

                                # Because in the discriminator training, we do not 
                                # want the gradient flow back to the generator part
                                # we detach seg_clas (mask_clas come the data, does not have grad)
                        
                                output_pred = dis_net(img = image.detach(), seg = seg_clas.detach())
                                output_grou = dis_net(img = image.detach(), seg = mask_clas.detach())

                                # p = elem_mul_p.squeeze().permute(1,2,0).cpu().detach().numpy()
                                # g = elem_mul_g.squeeze().permute(1,2,0).cpu().detach().numpy()
                                # image = image.squeeze().permute(1,2,0).cpu().detach().numpy()
                                # from PIL import Image
                                # seg_PIL = Image.fromarray(p, 'RGB')
                                # mask_PIL = Image.fromarray(g, 'RGB')
                                # seg_PIL.save('mul_seg.png')
                                # mask_PIL.save('mul_mask.png')
                                # raise RuntimeError

                                # from matplotlib import pyplot as plt
                                # fig, (ax1, ax2) = plt.subplots(1,2)
                                # ax1.imshow(mask_show)
                                # ax2.imshow(seg_show)
                                # plt.show(block=False)
                                # plt.pause(2)
                                # plt.close()  

                                # if iteration % (cfg.gen_iter + cfg.dis_iter) == 0:
                                #     print(f'Probability of fake is fake: {output_pred.mean().item():.2f}')
                                #     print(f'Probability of real is real: {output_grou.mean().item():.2f}')

                                # 0 for Fake/Generated
                                # 1 for True/Ground Truth
                                # fake_label = torch.zeros(b)
                                # real_label = torch.ones(b)

                                # Advice of practical implementation 
                                # from https://arxiv.org/abs/1611.08408
                                # loss_pred = -criterion_dis(output_pred,target=real_label)
                                # loss_pred = criterion_dis(output_pred,target=fake_label)
                                # loss_grou = criterion_dis(output_grou,target=real_label)
                                # loss_dis  = loss_pred + loss_grou

                                # Wasserstein Distance (Earth-Mover)
                                loss_dis = criterion_dis(input=output_grou,target=output_pred)
                            
                            # Backprop the discriminator
                            # Scales loss. Calls backward() on scaled loss to create scaled gradients.
                            scaler.scale(loss_dis).backward()
                            scaler.step(optimizer_dis)
                            scaler.update()
                            optimizer_dis.zero_grad()

                            # clip the updated parameters
                            _ = [par.data.clamp_(-cfg.clip_value, cfg.clip_value) for par in dis_net.parameters()]


                            # ----- Generator part -----
                            # freeze_pretrain(yolact_net, freeze=False)
                            # freeze_pretrain(net, freeze=False)
                            # freeze_pretrain(dis_net, freeze=False)
                            # if it_alter_period == (cfg.dis_iter+1):
                            #     print('--- Generator     training ---')
                            #     print('--- Discriminator freeze   ---')

                            # FIXME:
                            # print(f'dis time pass: {time.time()-present_time:.2f}')
                            # FIXME:
                            # present_time = time.time()

                            with torch.cuda.amp.autocast():
                                losses, seg_list, pred_list = net(datum)
                                seg_clas, mask_clas, b, seg_size = seg_mask_clas(seg_list, pred_list, datum)
                                image_list = [img.to(cuda0) for img in datum[0]]
                                image      = interpolate(torch.stack(image_list), size = seg_size, 
                                                            mode='bilinear',align_corners=False)
                                # Perform forward pass of all-fake batch through D
                                # NOTE this seg_clas CANNOT detach, in order to flow the 
                                # gradient back to the generator
                                # output = dis_net(img = image, seg = seg_clas)
                                # Since the log(1-D(G(x))) not provide sufficient gradients
                                # We want log(D(G(x)) instead, this can be achieve by
                                # use the real_label as target.
                                # This step is crucial for the information of discriminator
                                # to go into the generator.
                                # Calculate G's loss based on this output
                                # real_label = torch.ones(b)
                                # loss_gen   = criterion_dis(output,target=real_label)
                            
                                # GAN MaskRCNN
                                output_pred = dis_net(img = image, seg = seg_clas)
                                output_grou = dis_net(img = image, seg = mask_clas)

                                # Advice from WGAN
                                # loss_gen = -torch.mean(output)
                                loss_gen = criterion_gen(input=output_grou,target=output_pred)

                                # since the dis is already freeze, the gradients will only
                                # record the YOLACT
                                losses = { k: (v).mean() for k,v in losses.items() } # Mean here because Dataparallel
                                loss = sum([losses[k] for k in losses])
                                loss += loss_gen
                            
                            # Generator backprop
                            scaler.scale(loss).backward()
                            scaler.step(optimizer_gen)
                            scaler.update()
                            optimizer_gen.zero_grad()
                            

                            # FIXME:
                            # print(f'gen time pass: {time.time()-present_time:.2f}')
                            # print('GAN part over')

                        else:
                            losses, seg_list, pred_list = net(datum)
                            seg_clas, mask_clas, b, seg_size = seg_mask_clas(seg_list, pred_list, datum)

                            image_list = [img.to(cuda0) for img in datum[0]]
                            image    = interpolate(torch.stack(image_list), size = seg_size, 
                                                        mode='bilinear',align_corners=False)

                            output_pred = dis_net(img = image.detach(), seg = seg_clas.detach())
                            output_grou = dis_net(img = image.detach(), seg = mask_clas.detach())
                            loss_dis = criterion_dis(input=output_grou,target=output_pred)

                            loss_dis.backward()
                            optimizer_dis.step()
                            optimizer_dis.zero_grad()
                            _ = [par.data.clamp_(-cfg.clip_value, cfg.clip_value) for par in dis_net.parameters()]
                        
                            # ----- Generator part -----
                            # FIXME:
                            # print(f'dis time pass: {time.time()-present_time:.2f}')
                            # FIXME:
                            # present_time = time.time()

                            losses, seg_list, pred_list = net(datum)
                            seg_clas, mask_clas, b, seg_size = seg_mask_clas(seg_list, pred_list, datum)
                            image_list = [img.to(cuda0) for img in datum[0]]
                            image      = interpolate(torch.stack(image_list), size = seg_size, 
                                                        mode='bilinear',align_corners=False)
                                                        
                            # GAN MaskRCNN
                            output_pred = dis_net(img = image, seg = seg_clas)
                            output_grou = dis_net(img = image, seg = mask_clas)

                            loss_gen = criterion_gen(input=output_grou,target=output_pred)

                            # since the dis is already freeze, the gradients will only
                            # record the YOLACT
                            losses = { k: (v).mean() for k,v in losses.items() } # Mean here because Dataparallel
                            loss = sum([losses[k] for k in losses])
                            loss += loss_gen
                            loss.backward()
                            # Do this to free up vram even if loss is not finite
                            optimizer_gen.zero_grad()
                            if torch.isfinite(loss).item():
                                # since the optimizer_gen is for YOLACT only
                                # only the gen will be updated
                                optimizer_gen.step()       

                            # FIXME:
                            # print(f'gen time pass: {time.time()-present_time:.2f}')
                            # print('GAN part over')
                else:
                    # ====== Normal YOLACT Train ======
                    # Zero the grad to get ready to compute gradients
                    optimizer_gen.zero_grad()
                    # Forward Pass + Compute loss at the same time (see CustomDataParallel and NetLoss)
                    losses = net(datum)
                    losses = { k: (v).mean() for k,v in losses.items() } # Mean here because Dataparallel
                    loss = sum([losses[k] for k in losses])
                    # no_inf_mean removes some components from the loss, so make sure to backward through all of it
                    # all_loss = sum([v.mean() for v in losses.values()])

                    # Backprop
                    loss.backward() # Do this to free up vram even if loss is not finite
                    if torch.isfinite(loss).item():
                        optimizer_gen.step()                    
                
                # Add the loss to the moving average for bookkeeping
                _ = [loss_avgs[k].add(losses[k].item()) for k in losses]
                # for k in losses:
                #     loss_avgs[k].add(losses[k].item())

                cur_time  = time.time()
                elapsed   = cur_time - last_time
                last_time = cur_time

                # Exclude graph setup from the timing information
                if iteration != args.start_iter:
                    time_avg.add(elapsed)

                if iteration % 10 == 0:
                    eta_str = str(datetime.timedelta(seconds=(cfg.max_iter-iteration) * time_avg.get_avg())).split('.')[0]
                    
                    total = sum([loss_avgs[k].get_avg() for k in losses])
                    loss_labels = sum([[k, loss_avgs[k].get_avg()] for k in loss_types if k in losses], [])
                    if cfg.pred_seg:
                        print(('[%3d] %7d ||' + (' %s: %.3f |' * len(losses)) + ' T: %.3f || ETA: %s || timer: %.3f')
                                % tuple([epoch, iteration] + loss_labels + [total, eta_str, elapsed]), flush=True)
                        # print(f'Generator loss: {loss_gen:.2f} | Discriminator loss: {loss_dis:.2f}')
                    # Loss Key:
                    #  - B: Box Localization Loss
                    #  - C: Class Confidence Loss
                    #  - M: Mask Loss
                    #  - P: Prototype Loss
                    #  - D: Coefficient Diversity Loss
                    #  - E: Class Existence Loss
                    #  - S: Semantic Segmentation Loss
                    #  - T: Total loss

                if args.log:
                    precision = 5
                    loss_info = {k: round(losses[k].item(), precision) for k in losses}
                    loss_info['T'] = round(loss.item(), precision)

                    if args.log_gpu:
                        log.log_gpu_stats = (iteration % 10 == 0) # nvidia-smi is sloooow
                        
                    log.log('train', loss=loss_info, epoch=epoch, iter=iteration,
                        lr=round(cur_lr, 10), elapsed=elapsed)

                    log.log_gpu_stats = args.log_gpu
                
                iteration += 1

                if iteration % args.save_interval == 0 and iteration != args.start_iter:
                    if args.keep_latest:
                        latest = SavePath.get_latest(args.save_folder, cfg.name)

                    print('Saving state, iter:', iteration)
                    yolact_net.save_weights(save_path(epoch, iteration))

                    if args.keep_latest and latest is not None:
                        if args.keep_latest_interval <= 0 or iteration % args.keep_latest_interval != args.save_interval:
                            print('Deleting old save...')
                            os.remove(latest)
            
            # This is done per epoch
            if args.validation_epoch > 0:
                # NOTE: Validation loss
                # if cfg.pred_seg:
                #     net.eval()
                #     dis_net.eval()
                #     cfg.gan_eval = True
                #     with torch.no_grad():
                #         for datum in tqdm(val_loader, desc='GAN Validation'):
                #             losses, seg_list, pred_list = net(datum)
                #             losses, seg_list, pred_list = net(datum)
                #             # TODO: warp below as a function
                #             seg_list = [v.permute(2,1,0).contiguous() for v in seg_list]
                #             b = len(seg_list) # batch size
                #             _, seg_h, seg_w = seg_list[0].size()

                #             seg_clas    = torch.zeros(b, cfg.num_classes-1, seg_h, seg_w)
                #             mask_clas   = torch.zeros(b, cfg.num_classes-1, seg_h, seg_w)
                #             target_list = [target for target in datum[1][0]]
                #             mask_list   = [interpolate(mask.unsqueeze(0), size = (seg_h,seg_w),mode='bilinear', \
                #                             align_corners=False).squeeze() for mask in datum[1][1]]

                #             for idx in range(b):
                #                 for i, (pred, i_target) in enumerate(zip(pred_list[idx], target_list[idx])):
                #                     seg_clas[idx, pred, ...]                 += seg_list[idx][i,...]
                #                     mask_clas[idx, i_target[-1].long(), ...] += mask_list[idx][i,...]
                               
                #             seg_clas = torch.clamp(seg_clas, 0, 1)
                #             image    = interpolate(torch.stack(datum[0]), size = (seg_h,seg_w), 
                #                                         mode='bilinear',align_corners=False)
                #             real_label  = torch.ones(b)
                #             output_pred = dis_net(img = image, seg = seg_clas)
                #             output_grou = dis_net(img = image, seg = mask_clas)
                #             loss_pred   = -criterion_dis(output_pred,target=real_label)
                #             loss_grou   =  criterion_dis(output_grou,target=real_label)
                #             loss_dis    = loss_pred + loss_grou
                #         losses = { k: (v).mean() for k,v in losses.items() }
                #         loss = sum([losses[k] for k in losses])
                #         val_loss = loss - cfg.lambda_dis*loss_dis
                #         schedule_dis.step(loss_dis)
                #         lr = [group['lr'] for group in optimizer_dis.param_groups]
                #         print(f'Discriminator lr: {lr[0]}')
                #     net.train()
                if epoch % args.validation_epoch == 0 and epoch > 0:
                    cfg.gan_eval = False
                    dis_net.eval()
                    compute_validation_map(epoch, iteration, yolact_net, val_dataset, log if args.log else None)
        
        # Compute validation mAP after training is finished
        compute_validation_map(epoch, iteration, yolact_net, val_dataset, log if args.log else None)
    except KeyboardInterrupt:
        if args.interrupt:
            print('Stopping early. Saving network...')
            
            # Delete previous copy of the interrupted network so we don't spam the weights folder
            SavePath.remove_interrupt(args.save_folder)
            
            yolact_net.save_weights(save_path(epoch, repr(iteration) + '_interrupt'))
        exit()

    yolact_net.save_weights(save_path(epoch, iteration))
示例#7
0
def interpret():
    if not os.path.exists(args.save_folder):
        os.mkdir(args.save_folder)

    dataset = COCODetection(image_path=cfg.dataset.train_images,
                            info_file=cfg.dataset.train_info,
                            transform=SSDAugmentation(MEANS))

    if args.validation_epoch > 0:
        setup_eval()
        val_dataset = COCODetection(image_path=cfg.dataset.valid_images,
                                    info_file=cfg.dataset.valid_info,
                                    transform=BaseTransform(MEANS))

    # Parallel wraps the underlying module, but when saving and loading we don't want that
    yolact_net = Yolact()
    net = yolact_net
    net.train()

    # I don't use the timer during training (I use a different timing method).
    # Apparently there's a race condition with multiple GPUs.
    timer.disable_all()

    # Both of these can set args.resume to None, so do them before the check
    if args.resume == 'interrupt':
        args.resume = SavePath.get_interrupt(args.save_folder)
    elif args.resume == 'latest':
        args.resume = SavePath.get_latest(args.save_folder, cfg.name)

    if args.resume is not None:
        print('Resuming training, loading {}...'.format(args.resume))
        yolact_net.load_weights(args.resume)

        if args.start_iter == -1:
            args.start_iter = SavePath.from_str(args.resume).iteration
    else:
        print('Initializing weights...')
        yolact_net.init_weights(backbone_path=args.save_folder +
                                cfg.backbone.path)

    optimizer = optim.SGD(net.parameters(),
                          lr=args.lr,
                          momentum=args.momentum,
                          weight_decay=args.decay)
    criterion = MultiBoxLoss(num_classes=cfg.num_classes,
                             pos_threshold=cfg.positive_iou_threshold,
                             neg_threshold=cfg.negative_iou_threshold,
                             negpos_ratio=3)

    if args.cuda:
        cudnn.benchmark = True
        net = nn.DataParallel(net).cuda()
        criterion = nn.DataParallel(criterion).cuda()
        # net = net.cuda()
        # criterion = criterion.cuda()
        # criterion = criterion.cuda()

    # loss counters
    loc_loss = 0
    conf_loss = 0
    iteration = max(args.start_iter, 0)
    last_time = time.time()

    epoch_size = len(dataset) // args.batch_size
    print("Dataset Size:")
    print(len(dataset))
    num_epochs = math.ceil(cfg.max_iter / epoch_size)

    num_epochs = 1

    # Which learning rate adjustment step are we on? lr' = lr * gamma ^ step_index
    step_index = 0

    data_loader = data.DataLoader(dataset,
                                  args.batch_size,
                                  num_workers=args.num_workers,
                                  shuffle=True,
                                  collate_fn=detection_collate,
                                  pin_memory=True)

    save_path = lambda epoch, iteration: SavePath(
        cfg.name, epoch, iteration).get_path(root=args.save_folder)
    time_avg = MovingAverage()

    global loss_types  # Forms the print order
    loss_avgs = {k: MovingAverage(100) for k in loss_types}

    print('Begin interpret!')
    print()
    # try-except so you can use ctrl+c to save early and stop training
    try:
        for epoch in range(num_epochs):
            # Resume from start_iter
            if (epoch + 1) * epoch_size < iteration:
                continue
            count = 0
            for datum in data_loader:
                del datum
                count += 1

                if count % 10000 == 0:
                    print(count)
                continue
    except KeyboardInterrupt:
        print('Stopping early. Saving network...')

    print("Loaded Dataset Numbers")
    print(count)
示例#8
0
def train(args, cfg, option, DataSet):

    if args.exp_name is not None:
        args.save_folder = os.path.join(args.save_folder, args.exp_name)
        args.log_folder = os.path.join(args.log_folder, args.exp_name)

    if not os.path.exists(args.save_folder):
        os.makedirs(args.save_folder, exist_ok=True)
    if not os.path.exists(args.log_folder):
        os.makedirs(args.log_folder, exist_ok=True)

    if True:
        dataset = DataSet(image_path=cfg.dataset.train_images,
                          mask_out_ch=cfg.gt_inst_ch,
                          info_file=cfg.dataset.train_info,
                          option=cfg.dataset,
                          transform=SSDAugmentation(cfg, MEANS),
                          running_mode='train')
    else:
        dataset = DataSet(image_path=cfg.dataset.valid_images,
                          mask_out_ch=cfg.gt_inst_ch,
                          info_file=cfg.dataset.valid_info,
                          option=cfg.dataset,
                          transform=SSDAugmentation(cfg, MEANS),
                          running_mode='train')

    # Parallel wraps the underlying module, but when saving and loading we don't want that
    dvis_net = DVIS(cfg)
    net = dvis_net

    net.train()
    if args.log:
        log = Log(cfg.name,
                  args.log_folder,
                  dict(args._get_kwargs()),
                  overwrite=(args.resume is None),
                  log_gpu_stats=args.log_gpu)

    # I don't use the timer during training (I use a different timing method).
    # Apparently there's a race condition with multiple GPUs, so disable it just to be safe.
    timer.disable_all()

    # Both of these can set args.resume to None, so do them before the check
    if args.resume == 'interrupt':
        args.resume = SavePath.get_interrupt(args.save_folder)
    elif args.resume == 'latest':
        args.resume = SavePath.get_latest(args.save_folder, cfg.name)

    if args.resume is not None:
        print('Resuming training, loading {}...'.format(args.resume))
        dvis_net.load_weights(args.resume,
                              load_firstLayer=option['model_1stLayer_en'],
                              load_lastLayer=option['model_lastLayer_en'])

        if args.start_iter == -1:
            args.start_iter = SavePath.from_str(args.resume).iteration
    else:
        print('Initializing weights...')
        dvis_net.init_weights(backbone_path=args.save_folder +
                              cfg.backbone.path)

    #optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=args.momentum,
    #                      weight_decay=args.decay)
    optimizer = optim.SGD([{
        'params': net.backbone.parameters(),
        'lr': args.lr * option['bkb_lr_alpha']
    }, {
        'params': net.fpn.parameters(),
        'lr': args.lr * option['fpn_lr_alpha']
    }, {
        'params': net.proto_net.parameters(),
        'lr': args.lr * option['proto_net_lr_alpha']
    }],
                          lr=args.lr,
                          momentum=args.momentum,
                          weight_decay=args.decay)
    criterion = LossEvaluate(option, class_weights=cfg.dataset.sem_weights)

    if args.batch_alloc is not None:
        args.batch_alloc = [int(x) for x in args.batch_alloc.split(',')]
        if sum(args.batch_alloc) != args.batch_size:
            print(
                'Error: Batch allocation (%s) does not sum to batch size (%s).'
                % (args.batch_alloc, args.batch_size))
            exit(-1)

    net = NetLoss(net, criterion)
    net = CustomDataParallel(net)
    if args.cuda:
        net = net.cuda()

    # Initialize everything
    if not cfg.freeze_bn:
        dvis_net.freeze_bn()  # Freeze bn so we don't kill our means

    # loss counters
    loc_loss = 0
    conf_loss = 0
    iteration = max(args.start_iter, 0)
    last_time = time.time()

    epoch_size = len(dataset) // args.batch_size
    num_epochs = math.ceil(cfg.max_iter / epoch_size)

    # Which learning rate adjustment step are we on? lr' = lr * gamma ^ step_index
    step_index = 0

    data_loader = data.DataLoader(dataset,
                                  args.batch_size,
                                  num_workers=args.num_workers,
                                  shuffle=False,
                                  collate_fn=detection_collate,
                                  pin_memory=True)
    writer = SummaryWriter(log_dir=args.log_folder)

    save_path = lambda epoch, iteration: SavePath(
        cfg.name, epoch, iteration).get_path(root=args.save_folder)
    time_avg = MovingAverage()

    loss_keys = [
        'binary', 'pi', 'l1', 'regul', 'iou', 'classify', 'eval_prec',
        'eval_rec', 'eval_acc'
    ]
    vis_keys = ['preds', 'gts', 'rgb', 'wghts', 'grad']
    loss_avgs = {k: MovingAverage(100) for k in loss_keys}

    print('Begin training!')
    # try-except so you can use ctrl+c to save early and stop training
    try:
        log_loss = dict()

        for epoch in range(num_epochs):
            # Resume from start_iter
            if (epoch + 1) * epoch_size < iteration:
                continue

            for datum in data_loader:
                # Stop if we've reached an epoch if we're resuming from start_iter
                if iteration == (epoch + 1) * epoch_size:
                    break
                # Stop at the configured number of iterations even if mid-epoch
                if iteration == cfg.max_iter:
                    break

                if iteration < 99:
                    iteration += 1
                    continue

                # Change a config setting if we've reached the specified iteration
                changed = False
                for change in cfg.delayed_settings:
                    if iteration >= change[0]:
                        changed = True
                        cfg.replace(change[1])

                        # Reset the loss averages because things might have changed
                        for avg in loss_avgs:
                            avg.reset()

                # If a config setting was changed, remove it from the list so we don't keep checking
                if changed:
                    cfg.delayed_settings = [
                        x for x in cfg.delayed_settings if x[0] > iteration
                    ]

                # Warm up by linearly interpolating the learning rate from some smaller value
                if cfg.lr_warmup_until > 0 and iteration <= cfg.lr_warmup_until:
                    set_lr(optimizer, (args.lr - cfg.lr_warmup_init) *
                           (iteration / cfg.lr_warmup_until) +
                           cfg.lr_warmup_init)

                # Adjust the learning rate at the given iterations, but also if we resume from past that iteration
                while step_index < len(
                        cfg.lr_steps
                ) and iteration >= cfg.lr_steps[step_index]:
                    step_index += 1
                    set_lr(optimizer, args.lr * (args.gamma**step_index))

                # Zero the grad to get ready to compute gradients
                optimizer.zero_grad()

                # Forward Pass + Compute loss at the same time (see CustomDataParallel and NetLoss0)
                ret = net(datum)

                # Mean here because Dataparallel and do  Backprop
                losses = {k: ret[k].mean() for k in loss_keys if k in ret}
                det_loss_keys = [k for k in loss_keys if k in losses]
                all_loss = sum([losses[k] for k in det_loss_keys])
                for k in det_loss_keys:
                    loss_avgs[k].add(losses[k].item())

                # backward and optimize
                if args.show_gradients == True:
                    ret['preds_0'].retain_grad()
                    all_loss.backward(retain_graph=True)
                    ret['grad'] = ret['preds_0'].grad[:, 0, :, :]
                else:
                    all_loss.backward(
                    )  # Do this to free up vram even if loss is not finite
                if torch.isfinite(all_loss).item():
                    optimizer.step()

                ret['preds'] = torch.nn.ReLU()(ret['preds'])
                vis_imgs = {k: ret[k] for k in vis_keys if k in ret}

                cur_time = time.time()
                elapsed = cur_time - last_time
                last_time = cur_time

                # Exclude graph setup from the timing information
                if iteration != args.start_iter:
                    time_avg.add(elapsed)

                if iteration % 10 == 0:
                    eta_str = str(
                        datetime.timedelta(seconds=(cfg.max_iter - iteration) *
                                           time_avg.get_avg())).split('.')[0]

                    total = sum([
                        loss_avgs[k].get_avg() for k in det_loss_keys
                        if 'eval' not in k
                    ])
                    loss_labels = sum(
                        [[k, loss_avgs[k].get_avg()]
                         for k in loss_keys if k in det_loss_keys], [])

                    print(('[%3d] %7d ||' +
                           (' %s: %.3f |' * len(det_loss_keys)) +
                           ' T: %.3f || ETA: %s || timer: %.3f') %
                          tuple([epoch, iteration] + loss_labels +
                                [total, eta_str, elapsed]),
                          flush=True)

                if args.log:
                    log_step = 50 // args.batch_size
                    for k in det_loss_keys:
                        if k not in log_loss:
                            log_loss[k] = loss_avgs[k].get_avg()
                        else:
                            log_loss[k] += loss_avgs[k].get_avg()

                    if iteration % log_step == log_step - 1:
                        for k in det_loss_keys:
                            writer.add_scalar(k + '_loss',
                                              log_loss[k] / float(log_step),
                                              iteration / log_step)
                            log_loss[k] = 0

                    log_fig_step = 100
                    if iteration % log_fig_step == log_fig_step - 1:
                        if 'davis' in args.dataset:
                            vis_imgs['rgb'] = vis_imgs['rgb'][:, :3, :, :]
                        fig = plot_tfboard_figure(
                            cfg, vis_imgs, show_grad=args.show_gradients)
                        writer.add_figure('prediction _ grad',
                                          fig,
                                          global_step=iteration / log_fig_step)
                iteration += 1

                if iteration % args.save_interval == 0 and iteration != args.start_iter:
                    if args.keep_latest:
                        latest = SavePath.get_latest(args.save_folder,
                                                     cfg.name)

                    print('Saving state, iter:', iteration)
                    dvis_net.save_weights(save_path(epoch, iteration))

                    if args.keep_latest and latest is not None:
                        if args.keep_latest_interval <= 0 or iteration % args.keep_latest_interval != args.save_interval:
                            print('Deleting old save...')
                            os.remove(latest)
                del ret, vis_imgs, losses
                # end of batch run
            # end of epoch

    except KeyboardInterrupt:
        if args.interrupt:
            print('Stopping early. Saving network...')

            # Delete previous copy of the interrupted network so we don't spam the weights folder
            SavePath.remove_interrupt(args.save_folder)

            writer.close()
            dvis_net.save_weights(
                save_path(epoch,
                          repr(iteration) + '_interrupt'))
        exit()

    writer.close()
    dvis_net.save_weights(save_path(epoch, iteration))