示例#1
0
 def _init_config(self, db_name_ext=None):
     self.config = load_config()
     self.site = self.config['site']
     self.site['url'] = 'localhost:{0}'.format(options.port)
     if db_name_ext and not self.config['database']['name'].endswith(
             '_test'):
         self.config['database']['name'] += db_name_ext
示例#2
0
 def setUp(self):
     logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', 
                     level=logging.DEBUG)
     
     self.config_ = load_config(("/media/sdc1/Aptana Studio 3 Workspace/"
                                 "configs/config.yaml"), 
                                logger, 
                                exit_with_error = True)
     
     if self.config_ == None:
         logger.error("No config. Exit.")
         sys.exit(1)
示例#3
0
 def setUp(self):
     fill_database()
     config_ = load_config(file_path = "/media/sdc1/Aptana Studio 3 Workspace/configs/config.yaml",
                           logger = logger)
     self.feature_extractor = EsaFeatureExtractor(prefix = config_['prefix'])
     self.ranker = ArticleRanker(extractor = self.feature_extractor)
     self.article_as_dict = {'news_vendor': 'TechCrunch', 
                             'author': "MG Siegler",
                             'link': "http://www.techcrunch.com",
                             'headline': "Again Apple",
                             'clean_content': "Fooobaaar!",
                             'content': "<p>Fooobaaar!</p>",
                             'features': {'version': '1.0',
                                         'data': [(1, 0.5),
                                                  (3, 0.6)
                                                 ]
                                         }
                             }
示例#4
0
    def setUp(self):
        logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', 
                            level=logging.DEBUG)
            
        
        config = load_config(file_path = "/home/karten/Programmierung/frontend/config.yaml",
                             logger = logger,
                             exit_with_error = True)
        
        #Connect to test database
        connect("nyan_test", port = 27017)
        fill_database()
        #connect(config['database']['db-name'], 
        #        username= config['database']['user'], 
        #        password= config['database']['passwd'], 
        #        port = config['database']['port'])

        self.user_id = User.objects(email = u'*****@*****.**').first().id
        #feature_extractor = EsaFeatureExtractor(prefix = config['prefix'])
        feature_extractor = TfidfFeatureExtractor(prefix = config['prefix'])
        self.trainer = UserModelBayes(self.user_id, extractor = feature_extractor)
示例#5
0
    def setUp(self):
        logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', 
                            level=logging.DEBUG)
            
        
        config = load_config(file_path = ("/media/sdc1/Aptana Studio 3 Workspace"
                                          "/configs/config.yaml"),
                             logger = logger,
                             exit_with_error = True)
        
        #Connect to test database
        connect("nyan_test", port = 20545)
        fill_database()
        #connect(config['database']['db-name'], 
        #        username= config['database']['user'], 
        #        password= config['database']['passwd'], 
        #        port = config['database']['port'])

        self.user_id = User.objects(email = u'*****@*****.**').first().id
        #feature_extractor = EsaFeatureExtractor(prefix = config['prefix'])
        feature_extractor = TfidfFeatureExtractor(prefix = config['prefix'])
        self.trainer = UserModelSVM(self.user_id, extractor = feature_extractor)
 # create console handler with a higher log level
 ch = logging.StreamHandler()
 ch.setLevel(logging.INFO)
 # create formatter and add it to the handlers
 formatter = logging.Formatter('%(asctime)s : %(levelname)s in %(module)s ' +
                               '[%(pathname)s:%(lineno)d]: %(message)s')
 ch.setFormatter(formatter)
 fh.setFormatter(formatter)
 # add the handlers to logger
 logger.addHandler(ch)
 logger.addHandler(fh)
 
 logger.info("running %s" % ' '.join(sys.argv))
 
 #Load config
 config_ = load_config(options.config, logger, exit_with_error = True)
     
 if config_ == None:
     logger.error("No config. Exit.")
     sys.exit(1)
     
 #Connect to mongo database
 connect(config_['database']['db-name'], 
         username= config_['database']['user'], 
         password= config_['database']['passwd'], 
         port = config_['database']['port'])
 
 #Init clean corpus
 #corpus = CleanCorpus()
 
 #save dictionary: word <-> token id map
示例#7
0
        pickle.load(
            open(
                "{}/{}/{}/query_y_{}.pkl".format(opt["data_dir"], "testing",
                                                 "log", idx), "rb")))
test_dataset = list(zip(supp_xs_s, supp_ys_s, query_xs_s, query_ys_s))

del (supp_xs_s, supp_ys_s, query_xs_s, query_ys_s)

print(
    "# epoch\ttrain_loss\tprecision5\tNDCG5\tMAP5\tprecision7\tNDCG7\tMAP7\tprecision10\tNDCG10\tMAP10"
)

if not os.path.exists(model_filename):
    print("Start training...")
    training(trainer,
             opt,
             train_dataset,
             test_dataset,
             batch_size=opt['batch_size'],
             num_epoch=opt['num_epoch'],
             model_save=opt["save"],
             model_filename=model_filename,
             logger=file_logger)

else:
    print("Load pre-trained model...")
    opt = helper.load_config(model_filename[:-2] + "config")
    helper.print_config(opt)
    trained_state_dict = torch.load(model_filename)
    trainer.load_state_dict(trained_state_dict)
示例#8
0
                        config['batch_size'])
                    fd = {
                        self.cnn.x: data,
                        self.cnn.y: labels,
                        self.cnn.is_training: True
                    }
                    loss, _, acc, smr = sess.run(
                        [loss_op, train_op, acc_op, merged_summary],
                        feed_dict=fd)
                    if s % config['num_print_step'] == 0:
                        writer.add_summary(smr, global_step)
                        print('{} steps, train accuracy: {:.6f}, loss: {:.6f}'.
                              format(global_step, acc, loss))
                        test_acc, test_smr = sess.run(
                            [acc_op, test_smr_acc],
                            feed_dict={
                                self.cnn.x: self.datasource.test_data,
                                self.cnn.y: self.datasource.test_labels,
                                self.cnn.is_training: False
                            })
                        writer.add_summary(test_smr, global_step)
                    global_step += 1
                print('{} steps, test accuracy:  {:.6f} ({}/{} epochs)'.format(
                    global_step, test_acc, i, config['num_epoch']))


if __name__ == '__main__':
    args = helper.get_args()
    config = helper.load_config(args.config)
    CNNRunner(config).run()
    torch.cuda.manual_seed(args.seed)

# make opt
opt = vars(args)
label2id = constant.LABEL_TO_ID
opt['num_class'] = len(label2id)

# print opt
helper.print_config(opt)

helper.ensure_dir(opt['save_dir'], verbose=True)

vocab_file = opt['save_dir'] + '/vocab.pkl'
vocab = Vocab(vocab_file)
opt['vocab_size'] = vocab.size
opt = helper.load_config(opt['save_dir'] + '/config.json', verbose=True)

if not torch.cuda.is_available():
    opt['cuda'] = False

# load data
print("Loading data from {} with batch size {} ...".format(
    opt['data_dir'], opt['batch_size']))

dev_batch = DataLoader(
    eval(open(opt['data_dir'] + '/test.list', 'r', encoding='utf-8').read()),
    opt['batch_size'], opt, vocab)

print('Building model...')
trainer = MyTrainer(opt)
current_lr = opt['lr']
示例#10
0
文件: frontend.py 项目: JOSMANC/nyan
#Configure logger
logging.basicConfig(format='-' * 80 + '\n' +
                           '%(asctime)s : %(levelname)s in %(module)s [%(pathname)s:%(lineno)d]:\n' +
                           '%(message)s\n' +
                           '-' * 80, 
                    level=logging.DEBUG,
                    filename= "log.txt")

#Flask app
app = Flask(__name__)

#salt for hashing etc.
SALT = u""

#Load non-FLASK config 
config = load_config("config.yaml", app.logger)

#Flask config
try:
    SECRET_KEY = config['flask']['secret_key']
    DEBUG = config['flask']['debug']
except KeyError as e:
    app.logger.error("Malformed config." +
                     "Could not get flask secret key and debug option: %s"
                     % (e))
    sys.exit(1)

app.config.from_object(__name__)

#Login manager
login_manager = LoginManager()
 def setUp(self):
     self.config = load_config(file_path = "/home/karten/Programmierung/frontend/config.yaml",
                          logger = logger,
                          exit_with_error = True)