示例#1
0
 def run_iter(batch, is_training):
     model.train(is_training)
     pre = wrap_with_variable(batch['pre'],
                              volatile=not is_training,
                              gpu=args.gpu)
     hyp = wrap_with_variable(batch['hyp'],
                              volatile=not is_training,
                              gpu=args.gpu)
     pre_length = wrap_with_variable(batch['pre_length'],
                                     volatile=not is_training,
                                     gpu=args.gpu)
     hyp_length = wrap_with_variable(batch['hyp_length'],
                                     volatile=not is_training,
                                     gpu=args.gpu)
     label = wrap_with_variable(batch['label'],
                                volatile=not is_training,
                                gpu=args.gpu)
     logits = model(pre=pre,
                    pre_length=pre_length,
                    hyp=hyp,
                    hyp_length=hyp_length)
     label_pred = logits.max(1)[1]
     accuracy = torch.eq(label, label_pred).float().mean()
     loss = criterion(input=logits, target=label)
     if is_training:
         optimizer.zero_grad()
         loss.backward()
         clip_grad_norm(parameters=params, max_norm=5)
         optimizer.step()
     return loss, accuracy
示例#2
0
def evaluate(args):
    with open(args.data, 'rb') as f:
        test_dataset: SNLIDataset = pickle.load(f)
    word_vocab = test_dataset.word_vocab
    label_vocab = test_dataset.label_vocab
    model = SNLIModel(num_classes=len(label_vocab),
                      num_words=len(word_vocab),
                      word_dim=args.word_dim,
                      hidden_dim=args.hidden_dim,
                      clf_hidden_dim=args.clf_hidden_dim,
                      clf_num_layers=args.clf_num_layers,
                      use_leaf_rnn=args.leaf_rnn,
                      intra_attention=args.intra_attention,
                      use_batchnorm=args.batchnorm,
                      dropout_prob=args.dropout)
    num_params = sum(np.prod(p.size()) for p in model.parameters())
    num_embedding_params = np.prod(model.word_embedding.weight.size())
    print(f'# of parameters: {num_params}')
    print(f'# of word embedding parameters: {num_embedding_params}')
    print(f'# of parameters (excluding word embeddings): '
          f'{num_params - num_embedding_params}')
    model.load_state_dict(torch.load(args.model))
    model.eval()
    if args.gpu > -1:
        model.cuda(args.gpu)
    test_data_loader = DataLoader(dataset=test_dataset,
                                  batch_size=args.batch_size,
                                  collate_fn=test_dataset.collate)
    num_correct = 0
    num_data = len(test_dataset)
    for batch in test_data_loader:
        pre = wrap_with_variable(batch['pre'], volatile=True, gpu=args.gpu)
        hyp = wrap_with_variable(batch['hyp'], volatile=True, gpu=args.gpu)
        pre_length = wrap_with_variable(batch['pre_length'],
                                        volatile=True,
                                        gpu=args.gpu)
        hyp_length = wrap_with_variable(batch['hyp_length'],
                                        volatile=True,
                                        gpu=args.gpu)
        label = wrap_with_variable(batch['label'], volatile=True, gpu=args.gpu)
        logits = model(pre=pre,
                       pre_length=pre_length,
                       hyp=hyp,
                       hyp_length=hyp_length)
        label_pred = logits.max(1)[1].squeeze(1)
        num_correct_batch = torch.eq(label, label_pred).long().sum()
        num_correct_batch = unwrap_scalar_variable(num_correct_batch)
        num_correct += num_correct_batch
    print(f'# data: {num_data}')
    print(f'# correct: {num_correct}')
    print(f'Accuracy: {num_correct / num_data:.4f}')
示例#3
0
 def run_iter(batch, is_training):
     model.train(is_training)
     words, length = batch.text
     label = batch.label
     length = wrap_with_variable(batch.text[1],
                                 volatile=not is_training,
                                 gpu=args.gpu)
     logits = model(words=words, length=length)
     label_pred = logits.max(1)[1]
     accuracy = torch.eq(label, label_pred).float().mean()
     loss = criterion(input=logits, target=label)
     if is_training:
         optimizer.zero_grad()
         loss.backward()
         clip_grad_norm(parameters=params, max_norm=5)
         optimizer.step()
     return loss, accuracy
示例#4
0
def evaluate(args):
    text_field = data.Field(lower=args.lower,
                            include_lengths=True,
                            batch_first=True)
    label_field = data.Field(sequential=False)

    filter_pred = None
    if not args.fine_grained:
        filter_pred = lambda ex: ex.label != 'neutral'
    dataset_splits = datasets.SST.splits(root='./data/sst',
                                         text_field=text_field,
                                         label_field=label_field,
                                         fine_grained=args.fine_grained,
                                         train_subtrees=True,
                                         filter_pred=filter_pred)
    test_dataset = dataset_splits[2]

    text_field.build_vocab(*dataset_splits)
    label_field.build_vocab(*dataset_splits)

    print(f'Number of classes: {len(label_field.vocab)}')

    _, _, test_loader = data.BucketIterator.splits(datasets=dataset_splits,
                                                   batch_size=args.batch_size,
                                                   device=args.gpu)

    num_classes = len(label_field.vocab)
    model = SSTModel(num_classes=num_classes,
                     num_words=len(text_field.vocab),
                     word_dim=args.word_dim,
                     hidden_dim=args.hidden_dim,
                     clf_hidden_dim=args.clf_hidden_dim,
                     clf_num_layers=args.clf_num_layers,
                     use_leaf_rnn=args.leaf_rnn,
                     bidirectional=args.bidirectional,
                     intra_attention=args.intra_attention,
                     use_batchnorm=args.batchnorm,
                     dropout_prob=args.dropout)
    num_params = sum(np.prod(p.size()) for p in model.parameters())
    num_embedding_params = np.prod(model.word_embedding.weight.size())
    print(f'# of parameters: {num_params}')
    print(f'# of word embedding parameters: {num_embedding_params}')
    print(f'# of parameters (excluding word embeddings): '
          f'{num_params - num_embedding_params}')
    model.load_state_dict(torch.load(args.model))
    model.eval()
    if args.gpu > -1:
        model.cuda(args.gpu)
    num_correct = 0
    num_data = len(test_dataset)
    for batch in test_loader:
        words, length = batch.text
        label = batch.label
        length = wrap_with_variable(length, volatile=True, gpu=args.gpu)
        logits = model(words=words, length=length)
        label_pred = logits.max(1)[1]
        num_correct_batch = torch.eq(label, label_pred).long().sum()
        num_correct_batch = unwrap_scalar_variable(num_correct_batch)
        num_correct += num_correct_batch
    print(f'# data: {num_data}')
    print(f'# correct: {num_correct}')
    print(f'Accuracy: {num_correct / num_data:.4f}')