示例#1
0
    def visualise_behaviour(env,
                            args,
                            policy,
                            iter_idx,
                            encoder=None,
                            reward_decoder=None,
                            image_folder=None,
                            **kwargs
                            ):
        """
        Visualises the behaviour of the policy, together with the latent state and belief.
        The environment passed to this method should be a SubProcVec or DummyVecEnv, not the raw env!
        """

        num_episodes = args.max_rollouts_per_task
        unwrapped_env = env.venv.unwrapped.envs[0]

        # --- initialise things we want to keep track of ---

        episode_all_obs = [[] for _ in range(num_episodes)]
        episode_prev_obs = [[] for _ in range(num_episodes)]
        episode_next_obs = [[] for _ in range(num_episodes)]
        episode_actions = [[] for _ in range(num_episodes)]
        episode_rewards = [[] for _ in range(num_episodes)]

        episode_returns = []
        episode_lengths = []

        episode_goals = []
        if getattr(unwrapped_env, 'belief_oracle', False):
            episode_beliefs = [[] for _ in range(num_episodes)]
        else:
            episode_beliefs = None

        if encoder is not None:
            # keep track of latent spaces
            episode_latent_samples = [[] for _ in range(num_episodes)]
            episode_latent_means = [[] for _ in range(num_episodes)]
            episode_latent_logvars = [[] for _ in range(num_episodes)]
        else:
            episode_latent_samples = episode_latent_means = episode_latent_logvars = None

        curr_latent_sample = curr_latent_mean = curr_latent_logvar = None

        # --- roll out policy ---

        env.reset_task()
        (obs_raw, obs_normalised) = env.reset()
        obs_raw = obs_raw.float().reshape((1, -1)).to(device)
        obs_normalised = obs_normalised.float().reshape((1, -1)).to(device)
        start_obs_raw = obs_raw.clone()

        for episode_idx in range(args.max_rollouts_per_task):

            curr_goal = env.get_task()
            curr_rollout_rew = []
            curr_rollout_goal = []

            if encoder is not None:

                if episode_idx == 0:
                    # reset to prior
                    curr_latent_sample, curr_latent_mean, curr_latent_logvar, hidden_state = encoder.prior(1)
                    curr_latent_sample = curr_latent_sample[0].to(device)
                    curr_latent_mean = curr_latent_mean[0].to(device)
                    curr_latent_logvar = curr_latent_logvar[0].to(device)

                episode_latent_samples[episode_idx].append(curr_latent_sample[0].clone())
                episode_latent_means[episode_idx].append(curr_latent_mean[0].clone())
                episode_latent_logvars[episode_idx].append(curr_latent_logvar[0].clone())

            episode_all_obs[episode_idx].append(start_obs_raw.clone())
            if getattr(unwrapped_env, 'belief_oracle', False):
                episode_beliefs[episode_idx].append(unwrapped_env.unwrapped._belief_state.copy())

            for step_idx in range(1, env._max_episode_steps + 1):

                if step_idx == 1:
                    episode_prev_obs[episode_idx].append(start_obs_raw.clone())
                else:
                    episode_prev_obs[episode_idx].append(obs_raw.clone())

                # act
                _, action, _ = utl.select_action(args=args,
                                                 policy=policy,
                                                 obs=obs_normalised if args.norm_obs_for_policy else obs_raw,
                                                 deterministic=True,
                                                 latent_sample=curr_latent_sample, latent_mean=curr_latent_mean,
                                                 latent_logvar=curr_latent_logvar)

                # observe reward and next obs
                (obs_raw, obs_normalised), (rew_raw, rew_normalised), done, infos = utl.env_step(env, action)
                obs_raw = obs_raw.reshape((1, -1)).to(device)
                obs_normalised = obs_normalised.reshape((1, -1)).to(device)

                if encoder is not None:
                    # update task embedding
                    curr_latent_sample, curr_latent_mean, curr_latent_logvar, hidden_state = encoder(
                        action.float().to(device),
                        obs_raw,
                        rew_raw.reshape((1, 1)).float().to(device),
                        hidden_state,
                        return_prior=False)

                    episode_latent_samples[episode_idx].append(curr_latent_sample[0].clone())
                    episode_latent_means[episode_idx].append(curr_latent_mean[0].clone())
                    episode_latent_logvars[episode_idx].append(curr_latent_logvar[0].clone())

                episode_all_obs[episode_idx].append(obs_raw.clone())
                episode_next_obs[episode_idx].append(obs_raw.clone())
                episode_rewards[episode_idx].append(rew_raw.clone())
                episode_actions[episode_idx].append(action.clone())

                curr_rollout_rew.append(rew_raw.clone())
                curr_rollout_goal.append(env.get_task().copy())

                if getattr(unwrapped_env, 'belief_oracle', False):
                    episode_beliefs[episode_idx].append(unwrapped_env.unwrapped._belief_state.copy())

                if infos[0]['done_mdp'] and not done:
                    start_obs_raw = infos[0]['start_state']
                    start_obs_raw = torch.from_numpy(start_obs_raw).float().reshape((1, -1)).to(device)
                    break

            episode_returns.append(sum(curr_rollout_rew))
            episode_lengths.append(step_idx)
            episode_goals.append(curr_goal)

        # clean up

        if encoder is not None:
            episode_latent_means = [torch.stack(e) for e in episode_latent_means]
            episode_latent_logvars = [torch.stack(e) for e in episode_latent_logvars]

        episode_prev_obs = [torch.cat(e) for e in episode_prev_obs]
        episode_next_obs = [torch.cat(e) for e in episode_next_obs]
        episode_actions = [torch.cat(e) for e in episode_actions]
        episode_rewards = [torch.cat(e) for e in episode_rewards]

        # plot behaviour & visualise belief in env

        rew_pred_means, rew_pred_vars = plot_bb(env, args, episode_all_obs, episode_goals, reward_decoder,
                                                episode_latent_means, episode_latent_logvars,
                                                image_folder, iter_idx, episode_beliefs)

        if reward_decoder:
            plot_rew_reconstruction(env, rew_pred_means, rew_pred_vars, image_folder, iter_idx)

        return episode_latent_means, episode_latent_logvars, \
               episode_prev_obs, episode_next_obs, episode_actions, episode_rewards, \
               episode_returns
示例#2
0
    def train(self):
        """
        Given some stream of environments and a logger (tensorboard),
        (meta-)trains the policy.
        """

        start_time = time.time()

        # reset environments
        (prev_obs_raw, prev_obs_normalised) = self.envs.reset()
        prev_obs_raw = prev_obs_raw.to(device)
        prev_obs_normalised = prev_obs_normalised.to(device)

        # insert initial observation / embeddings to rollout storage
        self.policy_storage.prev_obs_raw[0].copy_(prev_obs_raw)
        self.policy_storage.prev_obs_normalised[0].copy_(prev_obs_normalised)
        self.policy_storage.to(device)

        vae_is_pretrained = False
        for self.iter_idx in range(self.args.num_updates):

            # First, re-compute the hidden states given the current rollouts (since the VAE might've changed)
            # compute latent embedding (will return prior if current trajectory is empty)
            with torch.no_grad():
                latent_sample, latent_mean, latent_logvar, hidden_state = self.encode_running_trajectory(
                )

            # check if we flushed the policy storage
            assert len(self.policy_storage.latent_mean) == 0

            # add this initial hidden state to the policy storage
            self.policy_storage.hidden_states[0].copy_(hidden_state)
            self.policy_storage.latent_samples.append(latent_sample.clone())
            self.policy_storage.latent_mean.append(latent_mean.clone())
            self.policy_storage.latent_logvar.append(latent_logvar.clone())

            # rollout policies for a few steps
            for step in range(self.args.policy_num_steps):

                # sample actions from policy
                with torch.no_grad():
                    value, action, action_log_prob = utl.select_action(
                        args=self.args,
                        policy=self.policy,
                        obs=prev_obs_normalised
                        if self.args.norm_obs_for_policy else prev_obs_raw,
                        deterministic=False,
                        latent_sample=latent_sample,
                        latent_mean=latent_mean,
                        latent_logvar=latent_logvar,
                    )
                # observe reward and next obs
                (next_obs_raw, next_obs_normalised), (
                    rew_raw, rew_normalised), done, infos = utl.env_step(
                        self.envs, action)
                tasks = torch.FloatTensor([info['task']
                                           for info in infos]).to(device)
                done = torch.from_numpy(np.array(
                    done, dtype=int)).to(device).float().view((-1, 1))

                # create mask for episode ends
                masks_done = torch.FloatTensor([[0.0] if done_ else [1.0]
                                                for done_ in done]).to(device)
                # bad_mask is true if episode ended because time limit was reached
                bad_masks = torch.FloatTensor(
                    [[0.0] if 'bad_transition' in info.keys() else [1.0]
                     for info in infos]).to(device)

                # compute next embedding (for next loop and/or value prediction bootstrap)
                latent_sample, latent_mean, latent_logvar, hidden_state = utl.update_encoding(
                    encoder=self.vae.encoder,
                    next_obs=next_obs_raw,
                    action=action,
                    reward=rew_raw,
                    done=done,
                    hidden_state=hidden_state)

                # before resetting, update the embedding and add to vae buffer
                # (last state might include useful task info)
                if not (self.args.disable_decoder
                        and self.args.disable_stochasticity_in_latent):
                    self.vae.rollout_storage.insert(prev_obs_raw.clone(),
                                                    action.detach().clone(),
                                                    next_obs_raw.clone(),
                                                    rew_raw.clone(),
                                                    done.clone(),
                                                    tasks.clone())

                # add the obs before reset to the policy storage
                # (only used to recompute embeddings if rlloss is backpropagated through encoder)
                self.policy_storage.next_obs_raw[step] = next_obs_raw.clone()
                self.policy_storage.next_obs_normalised[
                    step] = next_obs_normalised.clone()

                # reset environments that are done
                done_indices = np.argwhere(
                    done.cpu().detach().flatten()).flatten()
                if len(done_indices) == self.args.num_processes:
                    [next_obs_raw, next_obs_normalised] = self.envs.reset()
                    if not self.args.sample_embeddings:
                        latent_sample = latent_sample
                else:
                    for i in done_indices:
                        [next_obs_raw[i],
                         next_obs_normalised[i]] = self.envs.reset(index=i)
                        if not self.args.sample_embeddings:
                            latent_sample[i] = latent_sample[i]

                # # add experience to policy buffer
                self.policy_storage.insert(
                    obs_raw=next_obs_raw,
                    obs_normalised=next_obs_normalised,
                    actions=action,
                    action_log_probs=action_log_prob,
                    rewards_raw=rew_raw,
                    rewards_normalised=rew_normalised,
                    value_preds=value,
                    masks=masks_done,
                    bad_masks=bad_masks,
                    done=done,
                    hidden_states=hidden_state.squeeze(0).detach(),
                    latent_sample=latent_sample.detach(),
                    latent_mean=latent_mean.detach(),
                    latent_logvar=latent_logvar.detach(),
                )

                prev_obs_normalised = next_obs_normalised
                prev_obs_raw = next_obs_raw

                self.frames += self.args.num_processes

            # --- UPDATE ---

            if self.args.precollect_len <= self.frames:
                # check if we are pre-training the VAE
                if self.args.pretrain_len > 0 and not vae_is_pretrained:
                    for _ in range(self.args.pretrain_len):
                        self.vae.compute_vae_loss(update=True)
                    vae_is_pretrained = True

                # otherwise do the normal update (policy + vae)
                else:

                    train_stats = self.update(
                        obs=prev_obs_normalised
                        if self.args.norm_obs_for_policy else prev_obs_raw,
                        latent_sample=latent_sample,
                        latent_mean=latent_mean,
                        latent_logvar=latent_logvar)

                    # log
                    run_stats = [action, action_log_prob, value]
                    if train_stats is not None:
                        self.log(run_stats, train_stats, start_time)

            # clean up after update
            self.policy_storage.after_update()
示例#3
0
    def load_and_render(self, load_iter):
        #save_path = os.path.join('/ext/varibad_github/v2/varibad/logs/logs_HalfCheetahJoint-v0/varibad_73__15:05_17:14:07', 'models')
        #save_path = os.path.join('/ext/varibad_github/v2/varibad/logs/hfield', 'models')
        save_path = os.path.join(
            '/ext/varibad_github/v2/varibad/logs/logs_HalfCheetahBlocks-v0/varibad_73__15:05_20:20:25',
            'models')
        self.policy.actor_critic = torch.load(
            os.path.join(save_path, "policy{0}.pt".format(load_iter)))
        self.vae.encoder = torch.load(
            os.path.join(save_path, "encoder{0}.pt").format(load_iter))

        args = self.args
        device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

        num_processes = 1
        num_episodes = 100
        num_steps = 1999

        #import pdb; pdb.set_trace()
        # initialise environments
        envs = make_vec_envs(
            env_name=args.env_name,
            seed=args.seed,
            num_processes=num_processes,  # 1
            gamma=args.policy_gamma,
            log_dir=args.agent_log_dir,
            device=device,
            allow_early_resets=False,
            episodes_per_task=self.args.max_rollouts_per_task,
            obs_rms=None,
            ret_rms=None,
        )

        # reset latent state to prior
        latent_sample, latent_mean, latent_logvar, hidden_state = self.vae.encoder.prior(
            num_processes)

        for episode_idx in range(num_episodes):
            (prev_obs_raw, prev_obs_normalised) = envs.reset()
            prev_obs_raw = prev_obs_raw.to(device)
            prev_obs_normalised = prev_obs_normalised.to(device)
            for step_idx in range(num_steps):

                with torch.no_grad():
                    _, action, _ = utl.select_action(
                        args=self.args,
                        policy=self.policy,
                        obs=prev_obs_normalised
                        if self.args.norm_obs_for_policy else prev_obs_raw,
                        latent_sample=latent_sample,
                        latent_mean=latent_mean,
                        latent_logvar=latent_logvar,
                        deterministic=True)

                # observe reward and next obs
                (next_obs_raw, next_obs_normalised), (
                    rew_raw,
                    rew_normalised), done, infos = utl.env_step(envs, action)
                # render
                envs.venv.venv.envs[0].env.env.env.env.render()

                # update the hidden state
                latent_sample, latent_mean, latent_logvar, hidden_state = utl.update_encoding(
                    encoder=self.vae.encoder,
                    next_obs=next_obs_raw,
                    action=action,
                    reward=rew_raw,
                    done=None,
                    hidden_state=hidden_state)

                prev_obs_normalised = next_obs_normalised
                prev_obs_raw = next_obs_raw

                if done[0]:
                    break
示例#4
0
    def train(self):
        """ Main training loop """
        start_time = time.time()

        # reset environments
        state, belief, task = utl.reset_env(self.envs, self.args)

        # insert initial observation / embeddings to rollout storage
        self.policy_storage.prev_state[0].copy_(state)

        # log once before training
        with torch.no_grad():
            self.log(None, None, start_time)

        for self.iter_idx in range(self.num_updates):

            # rollout policies for a few steps
            for step in range(self.args.policy_num_steps):

                # sample actions from policy
                with torch.no_grad():
                    value, action, action_log_prob = utl.select_action(
                        args=self.args,
                        policy=self.policy,
                        state=state,
                        belief=belief,
                        task=task,
                        deterministic=False)

                # observe reward and next obs
                [state, belief,
                 task], (rew_raw, rew_normalised), done, infos = utl.env_step(
                     self.envs, action, self.args)

                # create mask for episode ends
                masks_done = torch.FloatTensor([[0.0] if done_ else [1.0]
                                                for done_ in done]).to(device)
                # bad_mask is true if episode ended because time limit was reached
                bad_masks = torch.FloatTensor(
                    [[0.0] if 'bad_transition' in info.keys() else [1.0]
                     for info in infos]).to(device)

                # reset environments that are done
                done_indices = np.argwhere(done.flatten()).flatten()
                if len(done_indices) > 0:
                    state, belief, task = utl.reset_env(self.envs,
                                                        self.args,
                                                        indices=done_indices,
                                                        state=state)

                # add experience to policy buffer
                self.policy_storage.insert(
                    state=state,
                    belief=belief,
                    task=task,
                    actions=action,
                    action_log_probs=action_log_prob,
                    rewards_raw=rew_raw,
                    rewards_normalised=rew_normalised,
                    value_preds=value,
                    masks=masks_done,
                    bad_masks=bad_masks,
                    done=torch.from_numpy(np.array(done,
                                                   dtype=float)).unsqueeze(1),
                )

                self.frames += self.args.num_processes

            # --- UPDATE ---

            train_stats = self.update(state=state, belief=belief, task=task)

            # log
            run_stats = [action, action_log_prob, value]
            if train_stats is not None:
                with torch.no_grad():
                    self.log(run_stats, train_stats, start_time)

            # clean up after update
            self.policy_storage.after_update()
示例#5
0
def get_test_rollout(args, env, policy, encoder=None):
    num_episodes = args.max_rollouts_per_task

    # --- initialise things we want to keep track of ---

    episode_prev_obs = [[] for _ in range(num_episodes)]
    episode_next_obs = [[] for _ in range(num_episodes)]
    episode_actions = [[] for _ in range(num_episodes)]
    episode_rewards = [[] for _ in range(num_episodes)]

    episode_returns = []
    episode_lengths = []

    if encoder is not None:
        episode_latent_samples = [[] for _ in range(num_episodes)]
        episode_latent_means = [[] for _ in range(num_episodes)]
        episode_latent_logvars = [[] for _ in range(num_episodes)]
    else:
        curr_latent_sample = curr_latent_mean = curr_latent_logvar = None
        episode_latent_means = episode_latent_logvars = None
    # --- roll out policy ---

    # (re)set environment
    [obs_raw, obs_normalised] = env.reset()
    obs_raw = obs_raw.reshape((1, -1)).to(ptu.device)
    obs_normalised = obs_normalised.reshape((1, -1)).to(ptu.device)

    for episode_idx in range(num_episodes):

        curr_rollout_rew = []

        if encoder is not None:
            if episode_idx == 0 and encoder:
                # reset to prior
                curr_latent_sample, curr_latent_mean, curr_latent_logvar, hidden_state = encoder.prior(
                    1)
                curr_latent_sample = curr_latent_sample[0].to(ptu.device)
                curr_latent_mean = curr_latent_mean[0].to(ptu.device)
                curr_latent_logvar = curr_latent_logvar[0].to(ptu.device)

            episode_latent_samples[episode_idx].append(
                curr_latent_sample[0].clone())
            episode_latent_means[episode_idx].append(
                curr_latent_mean[0].clone())
            episode_latent_logvars[episode_idx].append(
                curr_latent_logvar[0].clone())

        for step_idx in range(1, env._max_episode_steps + 1):

            episode_prev_obs[episode_idx].append(obs_raw.clone())

            _, action, _ = utl.select_action(
                args=args,
                policy=policy,
                obs=obs_normalised if args.norm_obs_for_policy else obs_raw,
                deterministic=True,
                task_sample=curr_latent_sample,
                task_mean=curr_latent_mean,
                task_logvar=curr_latent_logvar)

            # observe reward and next obs
            (obs_raw,
             obs_normalised), (rew_raw,
                               rew_normalised), done, infos = utl.env_step(
                                   env, action)
            obs_raw = obs_raw.reshape((1, -1)).to(ptu.device)
            obs_normalised = obs_normalised.reshape((1, -1)).to(ptu.device)

            if encoder is not None:
                # update task embedding
                curr_latent_sample, curr_latent_mean, curr_latent_logvar, hidden_state = encoder(
                    action.float().to(ptu.device),
                    obs_raw,
                    rew_raw.reshape((1, 1)).float().to(ptu.device),
                    hidden_state,
                    return_prior=False)

                episode_latent_samples[episode_idx].append(
                    curr_latent_sample[0].clone())
                episode_latent_means[episode_idx].append(
                    curr_latent_mean[0].clone())
                episode_latent_logvars[episode_idx].append(
                    curr_latent_logvar[0].clone())

            episode_next_obs[episode_idx].append(obs_raw.clone())
            episode_rewards[episode_idx].append(rew_raw.clone())
            episode_actions[episode_idx].append(action.clone())

            if infos[0]['done_mdp']:
                break

        episode_returns.append(sum(curr_rollout_rew))
        episode_lengths.append(step_idx)

    # clean up
    if encoder is not None:
        episode_latent_means = [torch.stack(e) for e in episode_latent_means]
        episode_latent_logvars = [
            torch.stack(e) for e in episode_latent_logvars
        ]

    episode_prev_obs = [torch.cat(e) for e in episode_prev_obs]
    episode_next_obs = [torch.cat(e) for e in episode_next_obs]
    episode_actions = [torch.cat(e) for e in episode_actions]
    episode_rewards = [torch.cat(r) for r in episode_rewards]

    return episode_latent_means, episode_latent_logvars, \
           episode_prev_obs, episode_next_obs, episode_actions, episode_rewards, \
           episode_returns
示例#6
0
def evaluate(args,
             policy,
             ret_rms,
             iter_idx,
             tasks,
             encoder=None,
             num_episodes=None):
    env_name = args.env_name
    if hasattr(args, 'test_env_name'):
        env_name = args.test_env_name
    if num_episodes is None:
        num_episodes = args.max_rollouts_per_task
    num_processes = args.num_processes

    # --- set up the things we want to log ---

    # for each process, we log the returns during the first, second, ... episode
    # (such that we have a minimum of [num_episodes]; the last column is for
    #  any overflow and will be discarded at the end, because we need to wait until
    #  all processes have at least [num_episodes] many episodes)
    returns_per_episode = torch.zeros(
        (num_processes, num_episodes + 1)).to(device)

    # --- initialise environments and latents ---

    envs = make_vec_envs(
        env_name,
        seed=args.seed * 42 + iter_idx,
        num_processes=num_processes,
        gamma=args.policy_gamma,
        device=device,
        rank_offset=num_processes +
        1,  # to use diff tmp folders than main processes
        episodes_per_task=num_episodes,
        normalise_rew=args.norm_rew_for_policy,
        ret_rms=ret_rms,
        tasks=tasks,
        add_done_info=args.max_rollouts_per_task > 1,
    )
    num_steps = envs._max_episode_steps

    # reset environments
    state, belief, task = utl.reset_env(envs, args)

    # this counts how often an agent has done the same task already
    task_count = torch.zeros(num_processes).long().to(device)

    if encoder is not None:
        # reset latent state to prior
        latent_sample, latent_mean, latent_logvar, hidden_state = encoder.prior(
            num_processes)
    else:
        latent_sample = latent_mean = latent_logvar = hidden_state = None

    for episode_idx in range(num_episodes):

        for step_idx in range(num_steps):

            with torch.no_grad():
                _, action = utl.select_action(args=args,
                                              policy=policy,
                                              state=state,
                                              belief=belief,
                                              task=task,
                                              latent_sample=latent_sample,
                                              latent_mean=latent_mean,
                                              latent_logvar=latent_logvar,
                                              deterministic=True)

            # observe reward and next obs
            [state, belief,
             task], (rew_raw, rew_normalised), done, infos = utl.env_step(
                 envs, action, args)
            done_mdp = [info['done_mdp'] for info in infos]

            if encoder is not None:
                # update the hidden state
                latent_sample, latent_mean, latent_logvar, hidden_state = utl.update_encoding(
                    encoder=encoder,
                    next_obs=state,
                    action=action,
                    reward=rew_raw,
                    done=None,
                    hidden_state=hidden_state)

            # add rewards
            returns_per_episode[range(num_processes),
                                task_count] += rew_raw.view(-1)

            for i in np.argwhere(done_mdp).flatten():
                # count task up, but cap at num_episodes + 1
                task_count[i] = min(task_count[i] + 1,
                                    num_episodes)  # zero-indexed, so no +1
            if np.sum(done) > 0:
                done_indices = np.argwhere(done.flatten()).flatten()
                state, belief, task = utl.reset_env(envs,
                                                    args,
                                                    indices=done_indices,
                                                    state=state)

    envs.close()

    return returns_per_episode[:, :num_episodes]
示例#7
0
    def train(self):
        """
        Given some stream of environments and a logger (tensorboard),
        (meta-)trains the policy.
        """

        start_time = time.time()

        # reset environments
        (prev_obs_raw, prev_obs_normalised) = self.envs.reset()
        prev_obs_raw = prev_obs_raw.to(device)
        prev_obs_normalised = prev_obs_normalised.to(device)

        # insert initial observation / embeddings to rollout storage
        self.policy_storage.prev_obs_raw[0].copy_(prev_obs_raw)
        self.policy_storage.prev_obs_normalised[0].copy_(prev_obs_normalised)
        self.policy_storage.to(device)

        for self.iter_idx in range(self.args.num_updates):

            # check if we flushed the policy storage
            assert len(self.policy_storage.latent_mean) == 0

            # rollouts policies for a few steps
            for step in range(self.args.policy_num_steps):

                # sample actions from policy
                with torch.no_grad():
                    value, action, action_log_prob = utl.select_action(
                        policy=self.policy,
                        args=self.args,
                        obs=prev_obs_normalised
                        if self.args.norm_obs_for_policy else prev_obs_raw,
                        deterministic=False)

                # observe reward and next obs
                (next_obs_raw, next_obs_normalised), (
                    rew_raw, rew_normalised), done, infos = utl.env_step(
                        self.envs, action)
                action = action.float()

                # create mask for episode ends
                masks_done = torch.FloatTensor([[0.0] if done_ else [1.0]
                                                for done_ in done]).to(device)
                # bad_mask is true if episode ended because time limit was reached
                bad_masks = torch.FloatTensor(
                    [[0.0] if 'bad_transition' in info.keys() else [1.0]
                     for info in infos]).to(device)

                # add the obs before reset to the policy storage
                self.policy_storage.next_obs_raw[step] = next_obs_raw.clone()
                self.policy_storage.next_obs_normalised[
                    step] = next_obs_normalised.clone()

                # reset environments that are done
                done_indices = np.argwhere(done.flatten()).flatten()
                if len(done_indices) == self.args.num_processes:
                    [next_obs_raw, next_obs_normalised] = self.envs.reset()
                    if not self.args.sample_embeddings:
                        latent_sample = latent_sample
                else:
                    for i in done_indices:
                        [next_obs_raw[i],
                         next_obs_normalised[i]] = self.envs.reset(index=i)
                        if not self.args.sample_embeddings:
                            latent_sample[i] = latent_sample[i]

                # add experience to policy buffer
                self.policy_storage.insert(
                    obs_raw=next_obs_raw.clone(),
                    obs_normalised=next_obs_normalised.clone(),
                    actions=action.clone(),
                    action_log_probs=action_log_prob.clone(),
                    rewards_raw=rew_raw.clone(),
                    rewards_normalised=rew_normalised.clone(),
                    value_preds=value.clone(),
                    masks=masks_done.clone(),
                    bad_masks=bad_masks.clone(),
                    done=torch.from_numpy(np.array(
                        done, dtype=float)).unsqueeze(1).clone(),
                )

                prev_obs_normalised = next_obs_normalised
                prev_obs_raw = next_obs_raw

                self.frames += self.args.num_processes

            # --- UPDATE ---

            train_stats = self.update(prev_obs_normalised if self.args.
                                      norm_obs_for_policy else prev_obs_raw)

            # log
            run_stats = [action, action_log_prob, value]
            if train_stats is not None:
                self.log(run_stats, train_stats, start_time)

            # clean up after update
            self.policy_storage.after_update()
示例#8
0
    def train(self):
        """ Main Meta-Training loop """
        start_time = time.time()

        # reset environments
        prev_state, belief, task = utl.reset_env(self.envs, self.args)

        # insert initial observation / embeddings to rollout storage
        self.policy_storage.prev_state[0].copy_(prev_state)

        # log once before training
        with torch.no_grad():
            self.log(None, None, start_time)

        for self.iter_idx in range(self.num_updates):

            # First, re-compute the hidden states given the current rollouts (since the VAE might've changed)
            with torch.no_grad():
                latent_sample, latent_mean, latent_logvar, hidden_state = self.encode_running_trajectory(
                )

            # add this initial hidden state to the policy storage
            assert len(self.policy_storage.latent_mean
                       ) == 0  # make sure we emptied buffers
            self.policy_storage.hidden_states[0].copy_(hidden_state)
            self.policy_storage.latent_samples.append(latent_sample.clone())
            self.policy_storage.latent_mean.append(latent_mean.clone())
            self.policy_storage.latent_logvar.append(latent_logvar.clone())

            # rollout policies for a few steps
            for step in range(self.args.policy_num_steps):

                # sample actions from policy
                with torch.no_grad():
                    value, action = utl.select_action(
                        args=self.args,
                        policy=self.policy,
                        state=prev_state,
                        belief=belief,
                        task=task,
                        deterministic=False,
                        latent_sample=latent_sample,
                        latent_mean=latent_mean,
                        latent_logvar=latent_logvar,
                    )

                # take step in the environment
                [next_state, belief,
                 task], (rew_raw, rew_normalised), done, infos = utl.env_step(
                     self.envs, action, self.args)

                done = torch.from_numpy(np.array(
                    done, dtype=int)).to(device).float().view((-1, 1))
                # create mask for episode ends
                masks_done = torch.FloatTensor([[0.0] if done_ else [1.0]
                                                for done_ in done]).to(device)
                # bad_mask is true if episode ended because time limit was reached
                bad_masks = torch.FloatTensor(
                    [[0.0] if 'bad_transition' in info.keys() else [1.0]
                     for info in infos]).to(device)

                with torch.no_grad():
                    # compute next embedding (for next loop and/or value prediction bootstrap)
                    latent_sample, latent_mean, latent_logvar, hidden_state = utl.update_encoding(
                        encoder=self.vae.encoder,
                        next_obs=next_state,
                        action=action,
                        reward=rew_raw,
                        done=done,
                        hidden_state=hidden_state)

                # before resetting, update the embedding and add to vae buffer
                # (last state might include useful task info)
                if not (self.args.disable_decoder
                        and self.args.disable_kl_term):
                    self.vae.rollout_storage.insert(
                        prev_state.clone(),
                        action.detach().clone(), next_state.clone(),
                        rew_raw.clone(), done.clone(),
                        task.clone() if task is not None else None)

                # add the obs before reset to the policy storage
                self.policy_storage.next_state[step] = next_state.clone()

                # reset environments that are done
                done_indices = np.argwhere(done.cpu().flatten()).flatten()
                if len(done_indices) > 0:
                    next_state, belief, task = utl.reset_env(
                        self.envs,
                        self.args,
                        indices=done_indices,
                        state=next_state)

                # TODO: deal with resampling for posterior sampling algorithm
                #     latent_sample = latent_sample
                #     latent_sample[i] = latent_sample[i]

                # add experience to policy buffer
                self.policy_storage.insert(
                    state=next_state,
                    belief=belief,
                    task=task,
                    actions=action,
                    rewards_raw=rew_raw,
                    rewards_normalised=rew_normalised,
                    value_preds=value,
                    masks=masks_done,
                    bad_masks=bad_masks,
                    done=done,
                    hidden_states=hidden_state.squeeze(0),
                    latent_sample=latent_sample,
                    latent_mean=latent_mean,
                    latent_logvar=latent_logvar,
                )

                prev_state = next_state

                self.frames += self.args.num_processes

            # --- UPDATE ---

            if self.args.precollect_len <= self.frames:

                # check if we are pre-training the VAE
                if self.args.pretrain_len > self.iter_idx:
                    for p in range(self.args.num_vae_updates_per_pretrain):
                        self.vae.compute_vae_loss(
                            update=True,
                            pretrain_index=self.iter_idx *
                            self.args.num_vae_updates_per_pretrain + p)
                # otherwise do the normal update (policy + vae)
                else:

                    train_stats = self.update(state=prev_state,
                                              belief=belief,
                                              task=task,
                                              latent_sample=latent_sample,
                                              latent_mean=latent_mean,
                                              latent_logvar=latent_logvar)

                    # log
                    run_stats = [
                        action, self.policy_storage.action_log_probs, value
                    ]
                    with torch.no_grad():
                        self.log(run_stats, train_stats, start_time)

            # clean up after update
            self.policy_storage.after_update()

        self.envs.close()