def prepare(filepath, mean_image, h, w): width = w height = h img_array = cv2.imread(filepath) # read in the image img_array = imgproc.toUINT8(img_array) img_array = imgproc.process_image(img_array, (height, width)) img_array = np.float32(img_array) new_array = cv2.resize(img_array, (width, height)) # resize image to match model's expected sizing res = new_array.reshape(-1, height, width, 3) res = res - mean_image return res # return the image with shaping that TF wants.
def prepare(filepath, mean_image, h, w): width = w height = h img_array = cv2.imread( filepath, cv2.IMREAD_UNCHANGED, ) # read in the image, convert to grayscale img_array = imgproc.toUINT8(img_array) img_array = imgproc.process_image(img_array, (height, width)) #cv2.imshow("window", img_array) #cv2.waitKey() img_array = np.float32(img_array) new_array = cv2.resize( img_array, (width, height)) # resize image to match model's expected sizing res = new_array.reshape(-1, height, width, 3) res = res - mean_image return res # return the image with shaping that TF wants.