示例#1
0
def add_data_to_day_price(day_price: DataFrame,
                          index_day_price: DataFrame) -> DataFrame:
    group_list = []
    grouped = day_price.groupby("ticker_id")
    for key, group in grouped:
        group = group.reset_index(drop=True)
        group["sma_10"] = sma(group["close"], 10)
        group["increase_ratio_3"] = increase_from_lowest_price(
            group["low"], group["close"], 3)
        group["sma"] = sma(group["close"], 5)
        group_list.append(group)

    day_price = pd.concat(group_list, axis=0)
    day_price = day_price.reset_index(drop=True)
    group_list = []
    grouped = day_price.groupby("ticker_id")
    for key, group in grouped:
        increase_condition = group["sma"] >= 0.1
        # Result
        group["#result"] = increase_condition
        group["#priority"] = group["increase_ratio_3"].shift(
            1) + group["increase_ratio_3"].shift(2)
        group_list.append(group)
    day_price = pd.concat(group_list, axis=0)
    day_price = day_price.reset_index(drop=True)
    # Market Timing
    index_day_price["sma_3"] = sma(index_day_price["close"], 3)
    index_day_price["sma_5"] = sma(index_day_price["close"], 5)
    index_day_price["sma_10"] = sma(index_day_price["close"], 10)
    index_day_price["#market_timing"] = (
        (index_day_price["close"] > index_day_price["sma_3"])
        | (index_day_price["close"] > index_day_price["sma_5"])
        | (index_day_price["close"] > index_day_price["sma_10"]))
    index_day_price = index_day_price.set_index("date")
    return day_price, index_day_price
示例#2
0
def add_data_to_day_price(day_price: DataFrame,
                          index_day_price: DataFrame) -> DataFrame:
    group_list = []
    grouped = day_price.groupby("ticker_id")
    for key, group in grouped:
        group = group.reset_index(drop=True)
        group["sma_10"] = sma(group["close"], 10)
        group["increase_ratio_3"] = increase_from_lowest_price(
            group["low"], group["close"], 3)
        group["pdi_5"] = pdi(group["high"], group["low"], group["close"], 5,
                             MovingAverage.ema)
        group["pdi_5_sto"] = stochastic_fast_k(group["pdi_5"], group["pdi_5"],
                                               group["pdi_5"], 20)
        group["pdi_5_sto_pct_change_3"] = pct_change(group["pdi_5_sto"], 3)
        group_list.append(group)

    day_price = pd.concat(group_list, axis=0)
    day_price = day_price.reset_index(drop=True)
    group_list = []
    grouped = day_price.groupby("ticker_id")
    for key, group in grouped:
        increase_condition1 = (group["pdi_5_sto_pct_change_3"].shift(1) >=
                               0.1) | (group["pdi_5_sto_pct_change_3"].shift(2)
                                       >= 0.1)
        increase_condition = increase_condition1
        # Result
        group["#result"] = increase_condition
        group["#priority"] = group["increase_ratio_3"].shift(
            1) + group["increase_ratio_3"].shift(2)
        group_list.append(group)
    day_price = pd.concat(group_list, axis=0)
    day_price = day_price.reset_index(drop=True)
    # Market Timing
    index_day_price["sma_3"] = sma(index_day_price["close"], 3)
    index_day_price["sma_5"] = sma(index_day_price["close"], 5)
    index_day_price["sma_10"] = sma(index_day_price["close"], 10)
    index_day_price["#market_timing"] = (
        (index_day_price["close"] > index_day_price["sma_3"])
        | (index_day_price["close"] > index_day_price["sma_5"])
        | (index_day_price["close"] > index_day_price["sma_10"]))
    index_day_price = index_day_price.set_index("date")
    return day_price, index_day_price
示例#3
0
def add_data_to_day_price(day_price: DataFrame,
                          index_day_price: DataFrame) -> DataFrame:
    group_list = []
    grouped = day_price.groupby("ticker")
    for key, group in grouped:
        group = group.reset_index(drop=True)
        group["sma_10"] = sma(group["close"], 10)
        group["sma_20"] = sma(group["close"], 20)
        group["sma_tr_val_5"] = sma(group["tr_val"], 5)
        group["ibs"] = ibs(group["high"], group["low"], group["close"])
        group["increase_ratio_3"] = increase_from_lowest_price(
            group["low"], group["close"], 3)
        group["decrease_ratio_3"] = decrease_from_highest_price(
            group["high"], group["close"], 3)
        group_list.append(group)
    day_price = pd.concat(group_list, axis=0)
    day_price = day_price.reset_index(drop=True)
    group_list = []
    grouped = day_price.groupby("date")
    for key, group in grouped:
        group = group.reset_index(drop=True)
        group["rank_tr_val"] = rank(group["tr_val"])
        group["rank_tr_val_5"] = rank(group["sma_tr_val_5"])
        group_list.append(group)
    day_price = pd.concat(group_list, axis=0)
    day_price = day_price.reset_index(drop=True)
    group_list = []
    grouped = day_price.groupby("ticker")
    for key, group in grouped:
        # Condition1
        increase_condition1 = (group["increase_ratio_3"].shift(1) >= 0.1) | (
            group["increase_ratio_3"].shift(2) >= 0.1)
        increase_condition = increase_condition1
        decrease_condition1 = (group["decrease_ratio_3"] <
                               0) & (group["decrease_ratio_3"] > -0.1)
        decrease_condition2 = group["ibs"] < 0.25
        decrease_condition = decrease_condition1 & decrease_condition2
        liquidity_condition1 = group["rank_tr_val_5"] > 0.8
        liquidity_condition = liquidity_condition1
        # Result
        group[
            "#result"] = increase_condition & decrease_condition & liquidity_condition
        group["#priority"] = group["increase_ratio_3"]
        group_list.append(group)
    day_price = pd.concat(group_list, axis=0)
    day_price = day_price.reset_index(drop=True)
    # Market Timing
    index_day_price["sma_3"] = sma(index_day_price["close"], 3)
    index_day_price["sma_5"] = sma(index_day_price["close"], 5)
    index_day_price["sma_10"] = sma(index_day_price["close"], 10)
    index_day_price["#market_timing"] = (
        (index_day_price["close"] > index_day_price["sma_3"])
        | (index_day_price["close"] > index_day_price["sma_5"])
        | (index_day_price["close"] > index_day_price["sma_10"]))
    index_day_price = index_day_price.set_index("date")
    return day_price, index_day_price
示例#4
0
def add_data_to_day_price(day_price: DataFrame,
                          index_day_price: DataFrame) -> DataFrame:
    group_list = []
    grouped = day_price.groupby("ticker_id")
    for key, group in grouped:
        group = group.reset_index(drop=True)
        group["sma_10"] = sma(group["close"], 10)
        group["sma_20"] = sma(group["close"], 20)
        group["sma_tr_val_5"] = sma(group["tr_val"], 5)
        group["pct_change_1"] = pct_change(group["close"], 1)
        group["ibs"] = ibs(group["high"], group["low"], group["close"])
        group["increase_ratio_3"] = increase_from_lowest_price(
            group["low"], group["close"], 3)
        group_list.append(group)
    day_price = pd.concat(group_list, axis=0)
    day_price = day_price.reset_index(drop=True)
    group_list = []
    grouped = day_price.groupby("date")
    for key, group in grouped:
        group = group.reset_index(drop=True)
        group["rank_tr_val_5"] = rank(group["sma_tr_val_5"])
        group_list.append(group)
    day_price = pd.concat(group_list, axis=0)
    day_price = day_price.reset_index(drop=True)
    group_list = []
    grouped = day_price.groupby("ticker_id")
    for key, group in grouped:
        decrease_condition1 = group["open"] > group["close"]
        decrease_condition2 = group["pct_change_1"] < 0
        decrease_condition3 = group["ibs"] < 0.25
        decrease_condition = (decrease_condition1
                              | decrease_condition2) & decrease_condition3
        # Result
        group["#result"] = decrease_condition
        group["#priority"] = group["increase_ratio_3"].shift(
            1) + group["increase_ratio_3"].shift(2)
        group_list.append(group)
    day_price = pd.concat(group_list, axis=0)
    day_price = day_price.reset_index(drop=True)
    # Market Timing
    index_day_price["sma_3"] = sma(index_day_price["close"], 3)
    index_day_price["sma_5"] = sma(index_day_price["close"], 5)
    index_day_price["sma_10"] = sma(index_day_price["close"], 10)
    index_day_price["#market_timing"] = (
        (index_day_price["close"] > index_day_price["sma_3"])
        | (index_day_price["close"] > index_day_price["sma_5"])
        | (index_day_price["close"] > index_day_price["sma_10"]))
    index_day_price = index_day_price.set_index("date")
    return day_price, index_day_price
示例#5
0
def add_data_to_day_price(day_price: DataFrame,
                          index_day_price: DataFrame) -> DataFrame:
    group_list = []
    grouped = day_price.groupby("ticker_id")
    for key, group in grouped:
        group = group.reset_index(drop=True)
        group["sma_10"] = sma(group["close"], 10)
        group["sma_20"] = sma(group["close"], 20)
        group["sma_tr_val_5"] = sma(group["tr_val"], 5)
        group["pct_change_1"] = pct_change(group["close"], 1)
        group["ts_max_20"] = ts_max(group["close"], 20)
        group["ibs"] = ibs(group["high"], group["low"], group["close"])
        group["increase_ratio_3"] = increase_from_lowest_price(
            group["low"], group["close"], 3)
        group["pdi_5"] = pdi(group["high"], group["low"], group["close"], 5,
                             MovingAverage.ema)
        group["pdi_5_sto"] = stochastic_fast_k(group["pdi_5"], group["pdi_5"],
                                               group["pdi_5"], 20)
        group["pdi_5_sto_pct_change_3"] = pct_change(group["pdi_5_sto"], 3)
        group["pivot_standard"] = pivot_standard(group["high"], group["low"],
                                                 group["close"])
        group_list.append(group)
    day_price = pd.concat(group_list, axis=0)
    day_price = day_price.reset_index(drop=True)
    group_list = []
    grouped = day_price.groupby("date")
    for key, group in grouped:
        group = group.reset_index(drop=True)
        group["rank_tr_val_5"] = rank(group["sma_tr_val_5"])
        group_list.append(group)
    day_price = pd.concat(group_list, axis=0)
    day_price = day_price.reset_index(drop=True)
    group_list = []
    grouped = day_price.groupby("ticker_id")
    for key, group in grouped:
        increase_condition1 = (group["pdi_5_sto_pct_change_3"].shift(1) >=
                               0.1) | (group["pdi_5_sto_pct_change_3"].shift(2)
                                       >= 0.1)
        increase_condition = increase_condition1
        decrease_condition1 = group["open"] > group["close"]
        decrease_condition2 = group["pct_change_1"] < 0
        decrease_condition3 = group["ibs"] < 0.25
        decrease_condition = (decrease_condition1
                              | decrease_condition2) & decrease_condition3
        liquidity_condition1 = group["rank_tr_val_5"] > 0.8
        liquidity_condition = liquidity_condition1
        # Result
        group[
            "#result"] = increase_condition & decrease_condition & liquidity_condition
        group["#priority"] = group["increase_ratio_3"].shift(
            1) + group["increase_ratio_3"].shift(2)
        group_list.append(group)
    day_price = pd.concat(group_list, axis=0)
    day_price = day_price.reset_index(drop=True)
    # Market Timing
    index_day_price["sma_3"] = sma(index_day_price["close"], 3)
    index_day_price["sma_5"] = sma(index_day_price["close"], 5)
    index_day_price["sma_10"] = sma(index_day_price["close"], 10)
    index_day_price["#market_timing"] = (
        (index_day_price["close"] > index_day_price["sma_3"])
        | (index_day_price["close"] > index_day_price["sma_5"])
        | (index_day_price["close"] > index_day_price["sma_10"]))
    index_day_price = index_day_price.set_index("date")
    return day_price, index_day_price