def test(self, model_path=''):
        print('[app][test] Test model')

        try:
            print('*** [app][test] Load pre-trained model ' + model_path +
                  ' ***')
            self.model = load_checkpoint(self.model, model_path, self.is_cuda)
        except ValueError as e:
            print('[app][test] Error while loading the model.', e)

        self.save_traintest()

        # print('\n[app][test] Test all')
        # # acc = np.mean(self.accuracies)
        # # acc = self.accuracies
        # graphs = self.data[GRAPH]
        # labels = self.labels
        # self.run_test(graphs, labels)

        graphs = load_pickle(os.path.join(self.odir, 'train'))
        labels = load_pickle(os.path.join(self.odir, 'train_labels'))
        print('\n[app][test] Test on train graphs ({})'.format(len(labels)),
              os.path.join(self.odir, 'train'))
        self.run_test_fold(graphs, labels, fold=300)

        graphs = load_pickle(os.path.join(self.odir, 'test'))
        labels = load_pickle(os.path.join(self.odir, 'test_labels'))
        print('\n[app][test] Test on test graphs ({})'.format(len(labels)),
              os.path.join(self.odir, 'test'))
        self.run_test_fold(graphs, labels, fold=150)
示例#2
0
    def if_resume(self):
        if self.cfg.logger.resume:
            # load checkpoint
            print(f"{datetime.now():%Y-%m-%d %H:%M:%S} - LOADING checkpoint!!!")
            save_dir = self.cfg.directory.load
            checkpoint = load_checkpoint(save_dir, self.device)
            self.model.load_state_dict(checkpoint["model"])
            self.optimizer.load_state_dict(checkpoint["optimizer"])
            self.lr_scheduler.load_state_dict(checkpoint["lr_scheduler"])
            self.epoch = checkpoint["epoch"] + 1
            self.e_loss = checkpoint["e_loss"]
            self.iteration = checkpoint["iteration"] + 1
            self.best = checkpoint["best"]
            print(
                f"{datetime.now():%Y-%m-%d %H:%M:%S} " +
                f"LOADING checkpoint was successful, start from epoch {self.epoch}" +
                f" and loss {self.best}"
            )
        else:
            self.epoch = 1
            self.iteration = 0
            self.best = np.inf
            self.e_loss = []

        self.logger.set_epoch(self.epoch)
示例#3
0
    def __init__(self, cfg_dir: str, data_loader: DataLoader, model,
                 labels_definition):
        self.cfg = get_conf(cfg_dir)
        self._labels_definition = labels_definition
        #TODO
        self.logger = self.init_logger(self.cfg.logger)
        #self.dataset = CustomDataset(**self.cfg.dataset)
        self.data = data_loader
        #self.val_dataset = CustomDatasetVal(**self.cfg.val_dataset)
        #self.val_data = DataLoader(self.val_dataset, **self.cfg.dataloader)
        # self.logger.log_parameters({"tr_len": len(self.dataset),
        #                             "val_len": len(self.val_dataset)})
        self.model = model
        #self.model._resnet.conv1.apply(init_weights_normal)
        self.device = self.cfg.train_params.device
        self.model = self.model.to(device=self.device)
        if self.cfg.train_params.optimizer.lower() == "adam":
            self.optimizer = optim.Adam(self.model.parameters(),
                                        **self.cfg.adam)
        elif self.cfg.train_params.optimizer.lower() == "rmsprop":
            self.optimizer = optim.RMSprop(self.model.parameters(),
                                           **self.cfg.rmsprop)
        else:
            raise ValueError(
                f"Unknown optimizer {self.cfg.train_params.optimizer}")

        self.lr_scheduler = optim.lr_scheduler.CosineAnnealingLR(
            self.optimizer, T_max=100)
        self.criterion = nn.BCELoss()

        if self.cfg.logger.resume:
            # load checkpoint
            print("Loading checkpoint")
            save_dir = self.cfg.directory.load
            checkpoint = load_checkpoint(save_dir, self.device)
            self.model.load_state_dict(checkpoint["model"])
            self.optimizer.load_state_dict(checkpoint["optimizer"])
            self.lr_scheduler.load_state_dict(checkpoint["lr_scheduler"])
            self.epoch = checkpoint["epoch"]
            self.e_loss = checkpoint["e_loss"]
            self.best = checkpoint["best"]
            print(
                f"{datetime.now():%Y-%m-%d %H:%M:%S} "
                f"Loading checkpoint was successful, start from epoch {self.epoch}"
                f" and loss {self.best}")
        else:
            self.epoch = 1
            self.best = np.inf
            self.e_loss = []

        # initialize the early_stopping object
        self.early_stopping = EarlyStopping(
            patience=self.cfg.train_params.patience,
            verbose=True,
            delta=self.cfg.train_params.early_stopping_delta,
        )

        # stochastic weight averaging
        self.swa_model = AveragedModel(self.model)
        self.swa_scheduler = SWALR(self.optimizer, **self.cfg.SWA)
示例#4
0
    def test(self, model_path=''):
        print('Test model')

        try:
            print('*** Load pre-trained model ' + model_path + ' ***')
            self.model = load_checkpoint(self.model, model_path)
        except ValueError as e:
            print('Error while loading the model.', e)

        print('\nTest all')
        # acc = np.mean(self.accuracies)
        # acc = self.accuracies
        graphs = self.data[GRAPH]
        labels = self.labels
        self.run_test(graphs, labels)

        print('\nTest on train graphs')
        graphs = load_pickle(os.path.join(self.odir, 'train'))
        labels = load_pickle(os.path.join(self.odir, 'train_labels'))
        self.run_test(graphs, labels)

        print('\nTest on test graphs')
        graphs = load_pickle(os.path.join(self.odir, 'test'))
        labels = load_pickle(os.path.join(self.odir, 'test_labels'))
        self.run_test(graphs, labels)
示例#5
0
 def load_model_state(self, model_path=''):
     try:
         print('[App][load_model_state] *** Load pre-trained model ' +
               model_path + ' ***')
         self.model = load_checkpoint(self.model, model_path, self.is_cuda)
     except ValueError as e:
         print('Error while loading the model.', e)
示例#6
0
    def test_on_data(self, model_path=''):
        print('Test model')

        try:
            print('*** Load pre-trained model ' + model_path + ' ***')
            self.model = load_checkpoint(self.model, model_path)
        except ValueError as e:
            print('Error while loading the model.', e)

        print('\nTest on data')
        # acc = np.mean(self.accuracies)
        # acc = self.accuracies
        graphs = self.data[GRAPH]
        labels = self.labels

        self.run_test(graphs, labels)
示例#7
0
    def test(self, data, load_path='', mode=NODE_CLASSIFICATION):

        try:
            print('*** Load pre-trained model ***')
            self.model = load_checkpoint(self.model, load_path)
        except ValueError as e:
            print('Error while loading the model.', e)

        if mode == NODE_CLASSIFICATION:
            test_mask = data[TEST_MASK]
            labels = data[LABELS]
            acc, _ = self.model.eval_node_classification(labels, test_mask)
        else:
            acc = np.mean(self.accuracies)

        print("\nTest Accuracy {:.4f}".format(acc))

        return acc
    def train(self,
              save_path='',
              k_fold=10,
              train_list_file=None,
              test_list_file=None):
        if self.pretrained_weight is not None:
            self.model = load_checkpoint(self.model, self.pretrained_weight,
                                         self.is_cuda)
        save_dir = save_path.split('/checkpoint')[0]

        loss_fcn = torch.nn.CrossEntropyLoss()

        # initialize graphs
        self.accuracies = np.zeros(k_fold)
        graphs = self.data[GRAPH]  # load all the graphs

        # debug purposes: reshuffle all the data before the splitting
        random_indices = list(range(len(graphs)))
        random.shuffle(random_indices)
        graphs = [graphs[i] for i in random_indices]
        labels = self.labels[random_indices]
        graphs_names = [self.graphs_names[i] for i in random_indices]

        split_train_test = True if train_list_file is None and test_list_file is None else False
        print('[app][train] split_train_test', split_train_test)
        '''
        if split_train_test is True:
            print('[app][train] train_list_file', train_list_file)
            print('[app][train] test_list_file', test_list_file)
            #############################
            # Create new train/test set
            # Split train and test
            #############################
            train_size = int(self.TRAIN_SIZE * len(graphs))
            g_train = graphs[:train_size]
            l_train = labels[:train_size]
            n_train = graphs_names[:train_size]

            g_test = graphs[train_size:]
            l_test = labels[train_size:]
            n_test = graphs_names[train_size:]
            
        else:
            #############################
            # Load train and test graphs from list
            #############################
            train_files = []
            test_files = []
            g_train = []
            l_train = []
            n_train = []
            g_test = []
            l_test = []
            n_test = []
            with open(train_list_file, 'r') as f:
                train_files = [l.strip() for l in f.readlines()]
            with open(test_list_file, 'r') as f:
                test_files = [l.strip() for l in f.readlines()]
            
            for i in range(len(labels)):
                graph_jsonpath = graphs_names[i]
                # print(graph_jsonpath)
                if graph_jsonpath in train_files:
                    g_train.append(graphs[i])
                    l_train.append(labels[i])
                    n_train.append(graphs_names[i])
                if graph_jsonpath in test_files:
                    g_test.append(graphs[i])
                    l_test.append(labels[i])
                    n_test.append(graphs_names[i])

            l_train = torch.Tensor(l_train).type(torch.LongTensor)
            l_test = torch.Tensor(l_test).type(torch.LongTensor)
            if self.is_cuda is True:
                l_train = l_train.cuda()
                l_test = l_test.cuda()
        '''

        print('[app][train] len labels', len(labels))
        print('[app][train] len g_train', len(g_train))
        # print('[app][train] g_train', g_train)

        if not os.path.isdir(self.odir):
            os.makedirs(self.odir)
        save_pickle(g_train, os.path.join(self.odir, 'train'))
        save_pickle(l_train, os.path.join(self.odir, 'train_labels'))
        save_pickle(g_test, os.path.join(self.odir, 'test'))
        save_pickle(l_test, os.path.join(self.odir, 'test_labels'))

        # save graph name list to txt file
        save_txt(n_train, os.path.join(self.odir, 'train_list.txt'))
        save_txt(n_test, os.path.join(self.odir, 'test_list.txt'))

        K = k_fold
        for k in range(K):
            self.model = self.ModelObj(g=self.data_graph[0],
                                       config_params=self.model_config,
                                       n_classes=self.data_nclasses,
                                       n_rels=self.data_nrels,
                                       n_entities=self.data_nentities,
                                       is_cuda=self.is_cuda,
                                       batch_size=1,
                                       model_src_path=self.model_src_path)

            print('*** [app][__init__] Model layers ***')
            for name, param in self.model.named_parameters():
                if param.requires_grad:
                    print('\t', name, param.data.type())

            print('>>> [app][__init__] self.model.fc.weight.type',
                  self.model.fc.weight.type())

            optimizer = torch.optim.Adam(
                self.model.parameters(),
                lr=self.learning_config['lr'],
                weight_decay=self.learning_config['weight_decay'])

            start = int(len(g_train) / K) * k
            end = int(len(g_train) / K) * (k + 1)
            print('\n\n\n[app][train] Process new k=' + str(k) + ' | ' +
                  str(start) + '-' + str(end))

            # training batch
            train_batch_graphs = g_train[:start] + g_train[end:]
            train_batch_labels = l_train[list(range(0, start)) +
                                         list(range(end + 1, len(g_train)))]
            train_batch_samples = list(
                map(list, zip(train_batch_graphs, train_batch_labels)))
            train_batches = DataLoader(
                train_batch_samples,
                batch_size=self.learning_config['batch_size'],
                shuffle=True,
                collate_fn=collate)

            # testing batch
            val_batch_graphs = g_train[start:end]
            val_batch_labels = l_train[start:end]
            # print('[app][train] val_batch_graphs', val_batch_graphs)
            print('[app][train] len val_batch_graphs', len(val_batch_graphs))
            print('[app][train] val_batch_graphs[0].number_of_nodes()',
                  val_batch_graphs[0].number_of_nodes())
            print('[app][train] val_batch_graphs[-1].number_of_nodes()',
                  val_batch_graphs[-1].number_of_nodes())
            val_batch = dgl.batch(val_batch_graphs)

            print('[app][train] train_batches size: ', len(train_batches))
            print('[app][train] train_batch_graphs size: ',
                  len(train_batch_graphs))
            print('[app][train] val_batch_graphs size: ',
                  len(val_batch_graphs))
            print('[app][train] train_batches', train_batches)
            print('[app][train] val_batch_labels', val_batch_labels)

            dur = []
            for epoch in range(self.learning_config['epochs']):
                self.model.train()
                if epoch >= 3:
                    t0 = time.time()
                losses = []
                training_accuracies = []
                for iter_idx, (bg, label) in enumerate(train_batches):
                    # print('~~~ [app][train] bg', bg)
                    logits = self.model(bg)
                    if self.learning_config['cuda']:
                        label = label.cuda()
                    loss = loss_fcn(logits, label)
                    losses.append(loss.item())
                    _, indices = torch.max(logits, dim=1)
                    # print('~~~~ logits', logits)
                    # print('------------------')
                    print('\t [app][train] indices', indices)
                    # print('\t label', label)
                    correct = torch.sum(indices == label)
                    training_accuracies.append(correct.item() * 1.0 /
                                               len(label))

                    optimizer.zero_grad()
                    loss.backward(retain_graph=True)
                    # loss.backward()
                    optimizer.step()

                if epoch >= 3:
                    dur.append(time.time() - t0)

                val_acc, val_loss, _ = self.model.eval_graph_classification(
                    val_batch_labels, val_batch)
                print(
                    "[app][train] Epoch {:05d} | Time(s) {:.4f} | train_acc {:.4f} | train_loss {:.4f} | val_acc {:.4f} | val_loss {:.4f}"
                    .format(epoch,
                            np.mean(dur) if dur else 0,
                            np.mean(training_accuracies), np.mean(losses),
                            val_acc, val_loss))

                is_better = self.early_stopping(val_loss, self.model,
                                                save_path)
                if is_better:
                    self.accuracies[k] = val_acc

                if self.early_stopping.early_stop:
                    # Print model's state_dict
                    # print("*** Model's state_dict:")
                    # for param_tensor in self.model.state_dict():
                    #     print(param_tensor, "\t", self.model.state_dict()[param_tensor].size())

                    # # Print optimizer's state_dict
                    # print("*** Optimizer's state_dict:")
                    # for var_name in optimizer.state_dict():
                    #     print(var_name, "\t", optimizer.state_dict()[var_name])

                    # Save state dict
                    # torch.save(self.model.state_dict(), save_dir+'/model_state.pt')

                    # Save model
                    # torch.save({
                    #     'epoch': epoch,
                    #     'model_state_dict': self.model.state_dict(),
                    #     'optimizer_state_dict': optimizer.state_dict(),
                    #     'val_loss': val_loss,
                    # }, save_dir+'/saved')

                    print("[app][train] Early stopping")
                    break

            self.early_stopping.reset()
示例#9
0
    def train(self,
              save_path='',
              k_fold=10,
              train_list_file=None,
              test_list_file=None):
        if self.pretrained_weight is not None:
            self.model = load_checkpoint(self.model, self.pretrained_weight)

        loss_fcn = torch.nn.CrossEntropyLoss()

        # initialize graphs
        self.accuracies = np.zeros(k_fold)
        graphs = self.data[GRAPH]  # load all the graphs

        # debug purposes: reshuffle all the data before the splitting
        random_indices = list(range(len(graphs)))
        random.shuffle(random_indices)
        graphs = [graphs[i] for i in random_indices]
        labels = self.labels[random_indices]
        graphs_names = [self.graphs_names[i] for i in random_indices]

        split_train_test = True if train_list_file is None and test_list_file is None else False
        print('split_train_test', split_train_test)
        print('train_list_file', train_list_file)
        print('test_list_file', test_list_file)

        if split_train_test is True:
            #############################
            # Create new train/test set
            # Split train and test
            #############################
            train_size = int(self.TRAIN_SIZE * len(graphs))
            g_train = graphs[:train_size]
            l_train = labels[:train_size]
            n_train = graphs_names[:train_size]

            g_test = graphs[train_size:]
            l_test = labels[train_size:]
            n_test = graphs_names[train_size:]

        else:
            #############################
            # Load train and test graphs from list
            #############################
            train_files = []
            test_files = []
            g_train = []
            l_train = []
            n_train = []
            g_test = []
            l_test = []
            n_test = []
            with open(train_list_file, 'r') as f:
                train_files = [l.strip() for l in f.readlines()]
            with open(test_list_file, 'r') as f:
                test_files = [l.strip() for l in f.readlines()]

            for i in range(len(labels)):
                graph_jsonpath = graphs_names[i]
                # print(graph_jsonpath)
                if graph_jsonpath in train_files:
                    g_train.append(graphs[i])
                    l_train.append(labels[i])
                    n_train.append(graphs_names[i])
                if graph_jsonpath in test_files:
                    g_test.append(graphs[i])
                    l_test.append(labels[i])
                    n_test.append(graphs_names[i])

            l_train = torch.Tensor(l_train).type(torch.LongTensor)
            l_test = torch.Tensor(l_test).type(torch.LongTensor)
            if self.is_cuda is True:
                l_train = l_train.cuda()
                l_test = l_test.cuda()

        # print('len g_train', len(g_train))
        # print('g_train', g_train)

        if not os.path.isdir(self.odir):
            os.makedirs(self.odir)
        save_pickle(g_train, os.path.join(self.odir, 'train'))
        save_pickle(l_train, os.path.join(self.odir, 'train_labels'))
        save_pickle(g_test, os.path.join(self.odir, 'test'))
        save_pickle(l_test, os.path.join(self.odir, 'test_labels'))

        # save graph name list to txt file
        save_txt(n_train, os.path.join(self.odir, 'train_list.txt'))
        save_txt(n_test, os.path.join(self.odir, 'test_list.txt'))

        K = k_fold
        for k in range(K):  # K-fold cross validation

            # create GNN model
            # self.model = Model(g=self.data[GRAPH],
            #                    config_params=self.model_config,
            #                    n_classes=self.data[N_CLASSES],
            #                    n_rels=self.data[N_RELS] if N_RELS in self.data else None,
            #                    n_entities=self.data[N_ENTITIES] if N_ENTITIES in self.data else None,
            #                    is_cuda=self.learning_config['cuda'],
            #                    seq_dim=self.seq_max_length,
            #                    batch_size=1)

            optimizer = torch.optim.Adam(
                self.model.parameters(),
                lr=self.learning_config['lr'],
                weight_decay=self.learning_config['weight_decay'])

            if self.learning_config['cuda']:
                self.model.cuda()

            start = int(len(g_train) / K) * k
            end = int(len(g_train) / K) * (k + 1)
            print('\n\n\nProcess new k=' + str(k) + ' | ' + str(start) + '-' +
                  str(end))

            # testing batch
            val_batch_graphs = g_train[start:end]
            val_batch_labels = l_train[start:end]
            val_batch = dgl.batch(val_batch_graphs)

            # training batch
            train_batch_graphs = g_train[:start] + g_train[end:]
            train_batch_labels = l_train[list(range(0, start)) +
                                         list(range(end + 1, len(g_train)))]
            train_batch_samples = list(
                map(list, zip(train_batch_graphs, train_batch_labels)))
            train_batches = DataLoader(
                train_batch_samples,
                batch_size=self.learning_config['batch_size'],
                shuffle=True,
                collate_fn=collate)

            print('train_batches size: ', len(train_batches))
            print('train_batch_graphs size: ', len(train_batch_graphs))
            print('val_batch_graphs size: ', len(val_batch_graphs))
            print('train_batches', train_batches)
            print('val_batch_labels', val_batch_labels)

            dur = []
            for epoch in range(self.learning_config['epochs']):
                self.model.train()
                if epoch >= 3:
                    t0 = time.time()
                losses = []
                training_accuracies = []
                for iter_idx, (bg, label) in enumerate(train_batches):
                    logits = self.model(bg)
                    if self.learning_config['cuda']:
                        label = label.cuda()
                    loss = loss_fcn(logits, label)
                    losses.append(loss.item())
                    _, indices = torch.max(logits, dim=1)
                    correct = torch.sum(indices == label)
                    training_accuracies.append(correct.item() * 1.0 /
                                               len(label))

                    optimizer.zero_grad()
                    loss.backward(retain_graph=True)
                    optimizer.step()

                if epoch >= 3:
                    dur.append(time.time() - t0)

                val_acc, val_loss, _ = self.model.eval_graph_classification(
                    val_batch_labels, val_batch)
                print(
                    "Epoch {:05d} | Time(s) {:.4f} | train_acc {:.4f} | train_loss {:.4f} | val_acc {:.4f} | val_loss {:.4f}"
                    .format(epoch,
                            np.mean(dur) if dur else 0,
                            np.mean(training_accuracies), np.mean(losses),
                            val_acc, val_loss))

                is_better = self.early_stopping(val_loss, self.model,
                                                save_path)
                if is_better:
                    self.accuracies[k] = val_acc

                if self.early_stopping.early_stop:
                    print("Early stopping")
                    break

            self.early_stopping.reset()
示例#10
0
    def __init__(self, cfg_dir: str, data_loader_train: DataLoader,
                 data_loader_val: DataLoader, encoder, decoder,
                 labels_definition):
        self.cfg = get_conf(cfg_dir)
        self._labels_definition = labels_definition
        self.logger = self.init_logger(self.cfg.logger)
        self.task = decoder
        self.data_train = data_loader_train
        self.data_val = data_loader_val
        self.model = encoder
        self.decoder = decoder.mlp
        self.sig = nn.Sigmoid()
        #self.model._resnet.conv1.apply(init_weights_normal)
        self.device = self.cfg.train_params.device
        self.model = self.model.to(device=self.device)
        self.decoder = self.decoder.to(device=self.device)
        if self.cfg.train_params.optimizer.lower() == "adam":
            params = list(self.model.parameters()) + list(
                self.decoder.parameters())
            self.optimizer = optim.Adam(params, **self.cfg.adam)
        elif self.cfg.train_params.optimizer.lower() == "rmsprop":
            self.optimizer = optim.RMSprop(
                [self.model.parameters(),
                 self.decoder.parameters()], **self.cfg.rmsprop)
        else:
            raise ValueError(
                f"Unknown optimizer {self.cfg.train_params.optimizer}")

        self.lr_scheduler = optim.lr_scheduler.CosineAnnealingLR(
            self.optimizer, T_max=100)
        self.criterion_lbl = nn.BCELoss()
        self.criterion_box = nn.MSELoss()

        if self.cfg.logger.resume:
            # load checkpoint
            print("Loading checkpoint")
            save_dir = self.cfg.directory.load
            checkpoint = load_checkpoint(save_dir, self.device)
            self.model.load_state_dict(checkpoint["model"])
            self.optimizer.load_state_dict(checkpoint["optimizer"])
            self.lr_scheduler.load_state_dict(checkpoint["lr_scheduler"])
            self.epoch = checkpoint["epoch"]
            self.e_loss = checkpoint["e_loss"]
            self.best = checkpoint["best"]
            print(
                f"{datetime.now():%Y-%m-%d %H:%M:%S} "
                f"Loading checkpoint was successful, start from epoch {self.epoch}"
                f" and loss {self.best}")
        else:
            self.epoch = 1
            self.best = np.inf
            self.e_loss = []

        # initialize the early_stopping object
        self.early_stopping = EarlyStopping(
            patience=self.cfg.train_params.patience,
            verbose=True,
            delta=self.cfg.train_params.early_stopping_delta,
        )

        # stochastic weight averaging
        self.swa_model = AveragedModel(self.model)