def calculate_fw_heading_vector( self, follow_direction ):

    # get the necessary variables for the working set of sensors
    #   the working set is the sensors on the side we are bearing on, indexed from rearmost to foremost on the robot
    #   NOTE: uses preexisting knowledge of the how the sensors are stored and indexed
    if follow_direction == FWDIR_LEFT:
      # if we are following to the left, we bear on the righthand sensors
      sensor_placements = self.proximity_sensor_placements[7:3:-1]
      sensor_distances = self.supervisor.proximity_sensor_distances()[7:3:-1]
      sensor_detections = self.supervisor.proximity_sensor_positive_detections()[7:3:-1]
    elif follow_direction == FWDIR_RIGHT:
      # if we are following to the right, we bear on the lefthand sensors
      sensor_placements = self.proximity_sensor_placements[:4]
      sensor_distances = self.supervisor.proximity_sensor_distances()[:4]
      sensor_detections = self.supervisor.proximity_sensor_positive_detections()[:4]
    else:
      raise Exception( "unknown wall-following direction" )

    if True not in sensor_detections:
      # if there is no wall to track detected, we default to predefined reference points
      # NOTE: these points are designed to turn the robot towards the bearing side, which aids with cornering behavior
      #       the resulting heading vector is also meant to point close to directly aft of the robot
      #       this helps when determining switching conditions in the supervisor state machine
      p1 = [ -0.2, 0.0 ]
      if follow_direction == FWDIR_LEFT: p2 = [ -0.2, -0.0001 ]
      if follow_direction == FWDIR_RIGHT: p2 = [ -0.2, 0.0001 ]
    else:
      # sort the sensor distances along with their corresponding indices
      sensor_distances, indices = zip( *sorted( zip( # this method ensures two different sensors are always used
                                      sensor_distances, # sensor distances
                                      [0, 1, 2, 3]      # corresponding indices
                                    ) ) )
      # get the smallest sensor distances and their corresponding indices
      d1, d2 = sensor_distances[0:2]
      i1, i2 = indices[0:2]

      # calculate the vectors to the obstacle in the robot's reference frame
      sensor1_pos, sensor1_theta = sensor_placements[i1].vunpack()
      sensor2_pos, sensor2_theta = sensor_placements[i2].vunpack()
      p1, p2 = [ d1, 0.0 ], [ d2, 0.0 ]
      p1 = linalg.rotate_and_translate_vector( p1, sensor1_theta, sensor1_pos )
      p2 = linalg.rotate_and_translate_vector( p2, sensor2_theta, sensor2_pos )

      # ensure p2 is forward of p1
      if i2 < i1: p1, p2 = p2, p1

    # compute the key vectors and auxiliary data
    l_wall_surface = [ p2, p1 ]
    l_parallel_component = linalg.sub( p2, p1 )
    l_distance_vector = linalg.sub( p1, linalg.proj( p1, l_parallel_component ) )
    unit_perp = linalg.unit( l_distance_vector )
    distance_desired = linalg.scale( unit_perp, self.follow_distance )
    l_perpendicular_component = linalg.sub( l_distance_vector, distance_desired )
    l_fw_heading_vector = linalg.add( l_parallel_component, l_perpendicular_component )

    return l_fw_heading_vector, l_parallel_component, l_perpendicular_component, l_distance_vector, l_wall_surface
  def calculate_fw_heading_vector( self, follow_direction ):

    # get the necessary variables for the working set of sensors
    #   the working set is the sensors on the side we are bearing on, indexed from rearmost to foremost on the robot
    #   NOTE: uses preexisting knowledge of the how the sensors are stored and indexed
    if follow_direction == FWDIR_LEFT:
      # if we are following to the left, we bear on the righthand sensors
      sensor_placements = self.proximity_sensor_placements[7:3:-1]
      sensor_distances = self.supervisor.proximity_sensor_distances()[7:3:-1]
      sensor_detections = self.supervisor.proximity_sensor_positive_detections()[7:3:-1]
    elif follow_direction == FWDIR_RIGHT:
      # if we are following to the right, we bear on the lefthand sensors
      sensor_placements = self.proximity_sensor_placements[:4]
      sensor_distances = self.supervisor.proximity_sensor_distances()[:4]
      sensor_detections = self.supervisor.proximity_sensor_positive_detections()[:4]
    else:
      raise Exception( "unknown wall-following direction" )

    if True not in sensor_detections:
      # if there is no wall to track detected, we default to predefined reference points
      # NOTE: these points are designed to turn the robot towards the bearing side, which aids with cornering behavior
      #       the resulting heading vector is also meant to point close to directly aft of the robot
      #       this helps when determining switching conditions in the supervisor state machine
      p1 = [ -0.2, 0.0 ]
      if follow_direction == FWDIR_LEFT: p2 = [ -0.2, -0.0001 ]
      if follow_direction == FWDIR_RIGHT: p2 = [ -0.2, 0.0001 ]
    else:
      # sort the sensor distances along with their corresponding indices
      sensor_distances, indices = zip( *sorted( zip( # this method ensures two different sensors are always used
                                      sensor_distances, # sensor distances
                                      [0, 1, 2, 3]      # corresponding indices
                                    ) ) )
      # get the smallest sensor distances and their corresponding indices
      d1, d2 = sensor_distances[0:2]
      i1, i2 = indices[0:2]
      
      # calculate the vectors to the obstacle in the robot's reference frame
      sensor1_pos, sensor1_theta = sensor_placements[i1].vunpack()
      sensor2_pos, sensor2_theta = sensor_placements[i2].vunpack()                
      p1, p2 = [ d1, 0.0 ], [ d2, 0.0 ]
      p1 = linalg.rotate_and_translate_vector( p1, sensor1_theta, sensor1_pos )
      p2 = linalg.rotate_and_translate_vector( p2, sensor2_theta, sensor2_pos )

      # ensure p2 is forward of p1
      if i2 < i1: p1, p2 = p2, p1
    
    # compute the key vectors and auxiliary data
    l_wall_surface = [ p2, p1 ]
    l_parallel_component = linalg.sub( p2, p1 ) 
    l_distance_vector = linalg.sub( p1, linalg.proj( p1, l_parallel_component ) )
    unit_perp = linalg.unit( l_distance_vector )
    distance_desired = linalg.scale( unit_perp, self.follow_distance )
    l_perpendicular_component = linalg.sub( l_distance_vector, distance_desired )
    l_fw_heading_vector = linalg.add( l_parallel_component, l_perpendicular_component )

    return l_fw_heading_vector, l_parallel_component, l_perpendicular_component, l_distance_vector, l_wall_surface
示例#3
0
def convex_polygon_intersect_test(polygon1, polygon2):
    # assign polygons according to which has fewest sides - we will test against the polygon with fewer sides first
    if polygon1.numedges() <= polygon2.numedges():
        polygonA = polygon1
        polygonB = polygon2
    else:
        polygonA = polygon2
        polygonB = polygon1

    # perform Seperating Axis Test
    intersect = True
    edge_index = 0
    edges = polygonA.edges() + polygonB.edges()
    while intersect and edge_index < len(
            edges
    ):  # loop through the edges of polygonA searching for a separating axis
        # get an axis normal to the current edge
        edge = edges[edge_index]
        edge_vector = linalg.sub(edge[1], edge[0])
        projection_axis = linalg.lnormal(edge_vector)

        # get the projection ranges for each polygon onto the projection axis
        minA, maxA = range_project_polygon(projection_axis, polygonA)
        minB, maxB = range_project_polygon(projection_axis, polygonB)

        # test if projections overlap
        if minA > maxB or maxA < minB:
            intersect = False
        edge_index += 1

    return intersect
def convex_polygon_intersect_test( polygon1, polygon2 ):
  # assign polygons according to which has fewest sides - we will test against the polygon with fewer sides first
  if polygon1.numedges() <= polygon2.numedges():
    polygonA = polygon1
    polygonB = polygon2
  else:
    polygonA = polygon2
    polygonB = polygon1

  # perform Seperating Axis Test
  intersect = True
  edge_index = 0
  edges = polygonA.edges() + polygonB.edges()
  while intersect == True and edge_index < len( edges ): # loop through the edges of polygonA searching for a separating axis
    # get an axis normal to the current edge
    edge = edges[ edge_index ]
    edge_vector = linalg.sub( edge[1], edge[0] )
    projection_axis = linalg.lnormal( edge_vector )

    # get the projection ranges for each polygon onto the projection axis
    minA, maxA = range_project_polygon( projection_axis, polygonA )
    minB, maxB = range_project_polygon( projection_axis, polygonB )

    # test if projections overlap
    if minA > maxB or maxA < minB:
      intersect = False 
    edge_index += 1

  return intersect
    def _draw_detection_to_frame(self):
        target_delta = self.proximity_sensor.target_delta
        if target_delta != None:
            detector_endpoints = self.proximity_sensor.detector_line.vertexes
            detector_vector = linalg.sub(detector_endpoints[1], detector_endpoints[0])
            target_vector = linalg.add(detector_endpoints[0], linalg.scale(detector_vector, target_delta))

            self.viewer.current_frame.add_circle(pos=target_vector, radius=0.02, color="black", alpha=0.7)
示例#6
0
def line_segment_intersection(line1, line2):
    # see http://stackoverflow.com/questions/563198
    nointersect_symbol = (False, None, None)

    p1, r1 = line1[0], linalg.sub(line1[1], line1[0])
    p2, r2 = line2[0], linalg.sub(line2[1], line2[0])

    r1xr2 = float(linalg.cross(r1, r2))
    if r1xr2 == 0.0: return nointersect_symbol
    p2subp1 = linalg.sub(p2, p1)

    d1 = linalg.cross(p2subp1, r2) / r1xr2
    d2 = linalg.cross(p2subp1, r1) / r1xr2

    if d1 >= 0.0 and d1 <= 1.0 and d2 >= 0.0 and d2 <= 1.0:
        return True, linalg.add(p1, linalg.scale(r1, d1)), d1
    else:
        return nointersect_symbol
def line_segment_intersection( line1, line2 ):
  # see http://stackoverflow.com/questions/563198
  nointersect_symbol = ( False, None, None )

  p1, r1 = line1[0],   linalg.sub( line1[1], line1[0] )
  p2, r2 = line2[0],   linalg.sub( line2[1], line2[0] )

  r1xr2 = float( linalg.cross( r1, r2 ) )
  if r1xr2 == 0.0: return nointersect_symbol
  p2subp1 = linalg.sub( p2, p1 )

  d1 = linalg.cross( p2subp1, r2 ) / r1xr2
  d2 = linalg.cross( p2subp1, r1 ) / r1xr2

  if d1 >= 0.0 and d1 <= 1.0 and d2 >= 0.0 and d2 <= 1.0:
    return True, linalg.add( p1, linalg.scale( r1, d1 ) ), d1
  else:
    return nointersect_symbol
  def _draw_detection_to_frame( self ):
    target_delta = self.proximity_sensor.target_delta
    if target_delta != None:
      detector_endpoints = self.proximity_sensor.detector_line.vertexes
      detector_vector = linalg.sub( detector_endpoints[1], detector_endpoints[0] )
      target_vector = linalg.add( detector_endpoints[0], linalg.scale( detector_vector, target_delta ) )

      self.viewer.current_frame.add_circle( pos = target_vector,
                                            radius = 0.02,
                                            color = "black",
                                            alpha = 0.7 )
示例#9
0
    def _draw_detection_to_frame(self, frame):
        """
        Visualize the detection of the proximity sensor
        :param frame: The frame to be used
        """
        target_delta = self.proximity_sensor.target_delta
        if target_delta is not None:
            detector_endpoints = self.proximity_sensor.detector_line.vertexes
            detector_vector = linalg.sub(detector_endpoints[1],
                                         detector_endpoints[0])
            target_vector = linalg.add(
                detector_endpoints[0],
                linalg.scale(detector_vector, target_delta))

            frame.add_circle(pos=target_vector,
                             radius=0.02,
                             color="black",
                             alpha=0.7)
示例#10
0
 def _as_vector( self ):
   return linalg.sub( self.vertexes[1], self.vertexes[0] )
示例#11
0
 def _as_vector( self ):
   return linalg.sub( self.vertexes[1], self.vertexes[0] )