示例#1
0
def do_save_inference_model(args):
    if args.use_cuda:
        dev_count = fluid.core.get_cuda_device_count()
        place = fluid.CUDAPlace(0)
    else:
        dev_count = int(os.environ.get('CPU_NUM', 1))
        place = fluid.CPUPlace()

    src_vocab = reader.DataProcessor.load_dict(args.src_vocab_fpath)
    trg_vocab = reader.DataProcessor.load_dict(args.trg_vocab_fpath)
    args.src_vocab_size = len(src_vocab)
    args.trg_vocab_size = len(trg_vocab)

    test_prog = fluid.default_main_program()
    startup_prog = fluid.default_startup_program()

    with fluid.program_guard(test_prog, startup_prog):
        with fluid.unique_name.guard():

            # define input and reader

            input_field_names = desc.encoder_data_input_fields + desc.fast_decoder_data_input_fields
            input_descs = desc.get_input_descs(args.args)
            input_slots = [{
                "name": name,
                "shape": input_descs[name][0],
                "dtype": input_descs[name][1]
            } for name in input_field_names]

            input_field = InputField(input_slots)
            input_field.build(build_pyreader=True)

            # define the network

            predictions = create_net(is_training=False,
                                     model_input=input_field,
                                     args=args)
            out_ids, out_scores = predictions

    # This is used here to set dropout to the test mode.
    test_prog = test_prog.clone(for_test=True)

    # prepare predicting

    ## define the executor and program for training

    exe = fluid.Executor(place)

    exe.run(startup_prog)
    assert (
        args.init_from_params), "must set init_from_params to load parameters"
    load(test_prog, os.path.join(args.init_from_params, "transformer"), exe)
    print("finish initing model from params from %s" % (args.init_from_params))

    # saving inference model

    fluid.io.save_inference_model(args.inference_model_dir,
                                  feeded_var_names=list(input_field_names),
                                  target_vars=[out_ids, out_scores],
                                  executor=exe,
                                  main_program=test_prog,
                                  model_filename="model.pdmodel",
                                  params_filename="params.pdparams")

    print("save inference model at %s" % (args.inference_model_dir))
示例#2
0
文件: train.py 项目: wbj0110/models
def do_train(args):
    if args.use_cuda:
        if num_trainers > 1:  # for multi-process gpu training
            dev_count = 1
        else:
            dev_count = fluid.core.get_cuda_device_count()
        gpu_id = int(os.environ.get('FLAGS_selected_gpus', 0))
        place = fluid.CUDAPlace(gpu_id)
    else:
        dev_count = int(os.environ.get('CPU_NUM', 1))
        place = fluid.CPUPlace()

    # define the data generator
    processor = reader.DataProcessor(fpattern=args.training_file,
                                     src_vocab_fpath=args.src_vocab_fpath,
                                     trg_vocab_fpath=args.trg_vocab_fpath,
                                     token_delimiter=args.token_delimiter,
                                     use_token_batch=args.use_token_batch,
                                     batch_size=args.batch_size,
                                     device_count=dev_count,
                                     pool_size=args.pool_size,
                                     sort_type=args.sort_type,
                                     shuffle=args.shuffle,
                                     shuffle_batch=args.shuffle_batch,
                                     start_mark=args.special_token[0],
                                     end_mark=args.special_token[1],
                                     unk_mark=args.special_token[2],
                                     max_length=args.max_length,
                                     n_head=args.n_head)
    batch_generator = processor.data_generator(phase="train")
    if num_trainers > 1:  # for multi-process gpu training
        batch_generator = fluid.contrib.reader.distributed_batch_reader(
            batch_generator)
    args.src_vocab_size, args.trg_vocab_size, args.bos_idx, args.eos_idx, \
        args.unk_idx = processor.get_vocab_summary()

    train_prog = fluid.default_main_program()
    startup_prog = fluid.default_startup_program()
    random_seed = eval(str(args.random_seed))
    if random_seed is not None:
        train_prog.random_seed = random_seed
        startup_prog.random_seed = random_seed

    with fluid.program_guard(train_prog, startup_prog):
        with fluid.unique_name.guard():

            # define input and reader

            input_field_names = desc.encoder_data_input_fields + \
                    desc.decoder_data_input_fields[:-1] + desc.label_data_input_fields
            input_descs = desc.get_input_descs(args.args)
            input_slots = [{
                "name": name,
                "shape": input_descs[name][0],
                "dtype": input_descs[name][1]
            } for name in input_field_names]

            input_field = InputField(input_slots)
            input_field.build(build_pyreader=True)

            # define the network

            sum_cost, avg_cost, token_num = create_net(is_training=True,
                                                       model_input=input_field,
                                                       args=args)

            # define the optimizer

            with fluid.default_main_program()._lr_schedule_guard():
                learning_rate = fluid.layers.learning_rate_scheduler.noam_decay(
                    args.d_model, args.warmup_steps) * args.learning_rate

            optimizer = fluid.optimizer.Adam(learning_rate=learning_rate,
                                             beta1=args.beta1,
                                             beta2=args.beta2,
                                             epsilon=float(args.eps))
            optimizer.minimize(avg_cost)

    # prepare training

    ## decorate the pyreader with batch_generator
    input_field.loader.set_batch_generator(batch_generator)

    ## define the executor and program for training

    exe = fluid.Executor(place)

    exe.run(startup_prog)
    # init position_encoding
    for pos_enc_param_name in desc.pos_enc_param_names:
        pos_enc_param = fluid.global_scope().find_var(
            pos_enc_param_name).get_tensor()

        pos_enc_param.set(
            position_encoding_init(args.max_length + 1, args.d_model), place)

    assert (args.init_from_checkpoint == "") or (args.init_from_pretrain_model
                                                 == "")

    ## init from some checkpoint, to resume the previous training
    if args.init_from_checkpoint:
        load(train_prog, os.path.join(args.init_from_checkpoint,
                                      "transformer"), exe)
        print("finish initing model from checkpoint from %s" %
              (args.init_from_checkpoint))

    ## init from some pretrain models, to better solve the current task
    if args.init_from_pretrain_model:
        load(train_prog,
             os.path.join(args.init_from_pretrain_model, "transformer"), exe)
        print("finish initing model from pretrained params from %s" %
              (args.init_from_pretrain_model))

    build_strategy = fluid.compiler.BuildStrategy()
    build_strategy.enable_inplace = True
    exec_strategy = fluid.ExecutionStrategy()
    if num_trainers > 1:
        dist_utils.prepare_for_multi_process(exe, build_strategy, train_prog)
        exec_strategy.num_threads = 1

    compiled_train_prog = fluid.CompiledProgram(train_prog).with_data_parallel(
        loss_name=avg_cost.name,
        build_strategy=build_strategy,
        exec_strategy=exec_strategy)

    # the best cross-entropy value with label smoothing
    loss_normalizer = -(
        (1. - args.label_smooth_eps) * np.log((1. - args.label_smooth_eps)) +
        args.label_smooth_eps * np.log(args.label_smooth_eps /
                                       (args.trg_vocab_size - 1) + 1e-20))
    # start training

    step_idx = 0
    total_batch_num = 0  # this is for benchmark
    total_batch_token_num = 0  # this is for benchmark word count
    for pass_id in range(args.epoch):
        pass_start_time = time.time()
        input_field.loader.start()

        batch_id = 0
        while True:
            if args.max_iter and total_batch_num == args.max_iter:  # this for benchmark
                return
            try:
                outs = exe.run(compiled_train_prog,
                               fetch_list=[sum_cost.name, token_num.name])

                total_batch_token_num += np.asarray(outs[1]).sum()
                if step_idx % args.print_step == 0:
                    sum_cost_val, token_num_val = np.asarray(
                        outs[0]), np.asarray(outs[1])
                    # sum the cost from multi-devices
                    total_sum_cost = sum_cost_val.sum()
                    total_token_num = token_num_val.sum()
                    total_avg_cost = total_sum_cost / total_token_num

                    if step_idx == 0:
                        logging.info(
                            "step_idx: %d, epoch: %d, batch: %d, avg loss: %f, "
                            "normalized loss: %f, ppl: %f" %
                            (step_idx, pass_id, batch_id, total_avg_cost,
                             total_avg_cost - loss_normalizer,
                             np.exp([min(total_avg_cost, 100)])))
                        avg_batch_time = time.time()
                    else:
                        logging.info(
                            "step_idx: %d, epoch: %d, batch: %d, avg loss: %f, "
                            "normalized loss: %f, ppl: %f, batch speed: %.2f steps/s, ips: %.2f words/sec"
                            % (step_idx, pass_id, batch_id, total_avg_cost,
                               total_avg_cost - loss_normalizer,
                               np.exp([min(total_avg_cost, 100)
                                       ]), args.print_step /
                               (time.time() - avg_batch_time),
                               total_batch_token_num /
                               (time.time() - avg_batch_time)))
                        avg_batch_time = time.time()

                    total_batch_token_num = 0

                if step_idx % args.save_step == 0 and step_idx != 0:
                    if args.save_model_path:
                        model_path = os.path.join(args.save_model_path,
                                                  "step_" + str(step_idx),
                                                  "transformer")
                        fluid.save(train_prog, model_path)

                batch_id += 1
                step_idx += 1
                total_batch_num = total_batch_num + 1  # this is for benchmark

                # profiler tools for benchmark
                if args.is_profiler and pass_id == 0 and batch_id == args.print_step:
                    profiler.start_profiler("All")
                elif args.is_profiler and pass_id == 0 and batch_id == args.print_step + 5:
                    profiler.stop_profiler("total", args.profiler_path)
                    return

            except fluid.core.EOFException:
                input_field.loader.reset()
                break

        time_consumed = time.time() - pass_start_time

    if args.save_model_path:
        model_path = os.path.join(args.save_model_path, "step_final",
                                  "transformer")
        fluid.save(train_prog, model_path)

    if args.enable_ce:  # For CE
        print("kpis\ttrain_cost_card%d\t%f" % (dev_count, total_avg_cost))
        print("kpis\ttrain_duration_card%d\t%f" % (dev_count, time_consumed))
示例#3
0
from Descriptors.sift import Sift
from Descriptors.matching import MultiMatch
from utils.load import load
from utils.calibrate import calibrate
from SFM.camera import Projection
from SFM.reconstruction import Reconstruction
from utils.display import *
from Descriptors.orb import Orb

im_list = load('dataset/sfm/grillage')
calibration = calibrate('dataset/calib')

detector = Orb(nfeatures=5000)
matcher = MultiMatch(detector, im_list)
matcher.fit()

reconstruction = Reconstruction(matcher, calibration)
X_ba = reconstruction.reconstruct()
#for sfm in reconstruction.sfm_list:
#    plot_reprojection(sfm)

plot_reprojection_multi(reconstruction)
P_list = [cam.projection for cam in reconstruction.camera_list]
plot_3D_points(X_ba, P_list)
示例#4
0
def do_predict(args):
    if args.use_cuda:
        dev_count = fluid.core.get_cuda_device_count()
        place = fluid.CUDAPlace(0)
    else:
        dev_count = int(os.environ.get('CPU_NUM', 1))
        place = fluid.CPUPlace()
    # define the data generator
    processor = reader.DataProcessor(fpattern=args.predict_file,
                                     src_vocab_fpath=args.src_vocab_fpath,
                                     trg_vocab_fpath=args.trg_vocab_fpath,
                                     token_delimiter=args.token_delimiter,
                                     use_token_batch=False,
                                     batch_size=args.batch_size,
                                     device_count=dev_count,
                                     pool_size=args.pool_size,
                                     sort_type=reader.SortType.NONE,
                                     shuffle=False,
                                     shuffle_batch=False,
                                     start_mark=args.special_token[0],
                                     end_mark=args.special_token[1],
                                     unk_mark=args.special_token[2],
                                     max_length=args.max_length,
                                     n_head=args.n_head)
    batch_generator = processor.data_generator(phase="predict", place=place)
    args.src_vocab_size, args.trg_vocab_size, args.bos_idx, args.eos_idx, \
        args.unk_idx = processor.get_vocab_summary()
    trg_idx2word = reader.DataProcessor.load_dict(
        dict_path=args.trg_vocab_fpath, reverse=True)

    test_prog = fluid.default_main_program()
    startup_prog = fluid.default_startup_program()

    with fluid.program_guard(test_prog, startup_prog):
        with fluid.unique_name.guard():

            # define input and reader

            input_field_names = desc.encoder_data_input_fields + desc.fast_decoder_data_input_fields
            input_descs = desc.get_input_descs(args.args)
            input_slots = [{
                "name": name,
                "shape": input_descs[name][0],
                "dtype": input_descs[name][1]
            } for name in input_field_names]

            input_field = InputField(input_slots)
            input_field.build(build_pyreader=True)

            # define the network

            predictions = create_net(is_training=False,
                                     model_input=input_field,
                                     args=args)
            out_ids, out_scores = predictions

    # This is used here to set dropout to the test mode.
    test_prog = test_prog.clone(for_test=True)

    # prepare predicting

    ## define the executor and program for training

    exe = fluid.Executor(place)

    exe.run(startup_prog)
    assert (
        args.init_from_params), "must set init_from_params to load parameters"
    load(test_prog, os.path.join(args.init_from_params, "transformer"), exe)
    print("finish initing model from params from %s" % (args.init_from_params))

    # to avoid a longer length than training, reset the size of position encoding to max_length
    for pos_enc_param_name in desc.pos_enc_param_names:
        pos_enc_param = fluid.global_scope().find_var(
            pos_enc_param_name).get_tensor()

        pos_enc_param.set(
            position_encoding_init(args.max_length + 1, args.d_model), place)

    exe_strategy = fluid.ExecutionStrategy()
    # to clear tensor array after each iteration
    exe_strategy.num_iteration_per_drop_scope = 1
    compiled_test_prog = fluid.CompiledProgram(test_prog).with_data_parallel(
        exec_strategy=exe_strategy, places=place)

    f = open(args.output_file, "wb")
    # start predicting
    ## decorate the pyreader with batch_generator
    input_field.loader.set_batch_generator(batch_generator)
    input_field.loader.start()
    while True:
        try:
            seq_ids, seq_scores = exe.run(
                compiled_test_prog,
                fetch_list=[out_ids.name, out_scores.name],
                return_numpy=False)

            # How to parse the results:
            #   Suppose the lod of seq_ids is:
            #     [[0, 3, 6], [0, 12, 24, 40, 54, 67, 82]]
            #   then from lod[0]:
            #     there are 2 source sentences, beam width is 3.
            #   from lod[1]:
            #     the first source sentence has 3 hyps; the lengths are 12, 12, 16
            #     the second source sentence has 3 hyps; the lengths are 14, 13, 15
            hyps = [[] for i in range(len(seq_ids.lod()[0]) - 1)]
            scores = [[] for i in range(len(seq_scores.lod()[0]) - 1)]
            for i in range(len(seq_ids.lod()[0]) -
                           1):  # for each source sentence
                start = seq_ids.lod()[0][i]
                end = seq_ids.lod()[0][i + 1]
                for j in range(end - start):  # for each candidate
                    sub_start = seq_ids.lod()[1][start + j]
                    sub_end = seq_ids.lod()[1][start + j + 1]
                    hyps[i].append(b" ".join([
                        trg_idx2word[idx] for idx in post_process_seq(
                            np.array(seq_ids)[sub_start:sub_end], args.bos_idx,
                            args.eos_idx)
                    ]))
                    scores[i].append(np.array(seq_scores)[sub_end - 1])
                    f.write(hyps[i][-1] + b"\n")
                    if len(hyps[i]) >= args.n_best:
                        break
        except fluid.core.EOFException:
            break

    f.close()
示例#5
0
from utils.load import load

import rospkg
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
import matplotlib.pyplot as plt
import numpy as np

rospack = rospkg.RosPack()

evaluation_data_prefix = "max_gaussian_mean"
evaluation_data_path = rospack.get_path(
    'krp_localization') + '/data/evaluations/'

eval_train = load(evaluation_data_path + evaluation_data_prefix + '_train.p')
eval_test = load(evaluation_data_path + evaluation_data_prefix + '_test.p')
criteria = eval_train.pop(0)
eval_test.pop(0)

eval_train = np.array(eval_train)
eval_test = np.array(eval_test)

mean_train, std_train = np.mean(eval_train, axis=0), np.std(eval_train, axis=0)
mean_test, std_test = np.mean(eval_test, axis=0), np.std(eval_test, axis=0)

x = np.arange(len(criteria))  # the label locations
width = 0.35  # the width of the bars

fig, ax = plt.subplots()
rects1 = ax.bar(x - width / 2,
                mean_train,