示例#1
0
def train(
        hyp,  # path/to/hyp.yaml or hyp dictionary
        opt,
        device,
        callbacks):
    save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, freeze = \
        Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \
        opt.resume, opt.noval, opt.nosave, opt.workers, opt.freeze

    # Directories
    w = save_dir / 'weights'  # weights dir
    (w.parent if evolve else w).mkdir(parents=True, exist_ok=True)  # make dir
    last, best = w / 'last.pt', w / 'best.pt'

    # Hyperparameters
    if isinstance(hyp, str):
        with open(hyp, errors='ignore') as f:
            hyp = yaml.safe_load(f)  # load hyps dict
    LOGGER.info(
        colorstr('hyperparameters: ') + ', '.join(f'{k}={v}'
                                                  for k, v in hyp.items()))

    # Save run settings
    if not evolve:
        with open(save_dir / 'hyp.yaml', 'w') as f:
            yaml.safe_dump(hyp, f, sort_keys=False)
        with open(save_dir / 'opt.yaml', 'w') as f:
            yaml.safe_dump(vars(opt), f, sort_keys=False)

    # Loggers
    data_dict = None
    if RANK in [-1, 0]:
        loggers = Loggers(save_dir, weights, opt, hyp,
                          LOGGER)  # loggers instance
        if loggers.wandb:
            data_dict = loggers.wandb.data_dict
            if resume:
                weights, epochs, hyp, batch_size = opt.weights, opt.epochs, opt.hyp, opt.batch_size

        # Register actions
        for k in methods(loggers):
            callbacks.register_action(k, callback=getattr(loggers, k))

    # Config
    plots = not evolve  # create plots
    cuda = device.type != 'cpu'
    init_seeds(1 + RANK)
    with torch_distributed_zero_first(LOCAL_RANK):
        data_dict = data_dict or check_dataset(data)  # check if None
    train_path, val_path = data_dict['train'], data_dict['val']
    nc = 1 if single_cls else int(data_dict['nc'])  # number of classes
    names = ['item'] if single_cls and len(
        data_dict['names']) != 1 else data_dict['names']  # class names
    assert len(
        names
    ) == nc, f'{len(names)} names found for nc={nc} dataset in {data}'  # check
    is_coco = isinstance(val_path, str) and val_path.endswith(
        'coco/val2017.txt')  # COCO dataset

    # Model
    check_suffix(weights, '.pt')  # check weights
    pretrained = weights.endswith('.pt')
    if pretrained:
        with torch_distributed_zero_first(LOCAL_RANK):
            weights = attempt_download(
                weights)  # download if not found locally
        ckpt = torch.load(weights, map_location='cpu'
                          )  # load checkpoint to CPU to avoid CUDA memory leak
        model = Model(cfg or ckpt['model'].yaml,
                      ch=3,
                      nc=nc,
                      anchors=hyp.get('anchors')).to(device)  # create
        exclude = [
            'anchor'
        ] if (cfg or hyp.get('anchors')) and not resume else []  # exclude keys
        csd = ckpt['model'].float().state_dict(
        )  # checkpoint state_dict as FP32
        csd = intersect_dicts(csd, model.state_dict(),
                              exclude=exclude)  # intersect
        model.load_state_dict(csd, strict=False)  # load
        LOGGER.info(
            f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}'
        )  # report
    else:
        model = Model(cfg, ch=3, nc=nc,
                      anchors=hyp.get('anchors')).to(device)  # create

    # Freeze
    freeze = [
        f'model.{x}.'
        for x in (freeze if len(freeze) > 1 else range(freeze[0]))
    ]  # layers to freeze
    for k, v in model.named_parameters():
        v.requires_grad = True  # train all layers
        if any(x in k for x in freeze):
            LOGGER.info(f'freezing {k}')
            v.requires_grad = False

    # Image size
    gs = max(int(model.stride.max()), 32)  # grid size (max stride)
    imgsz = check_img_size(opt.imgsz, gs,
                           floor=gs * 2)  # verify imgsz is gs-multiple

    # Batch size
    if RANK == -1 and batch_size == -1:  # single-GPU only, estimate best batch size
        batch_size = check_train_batch_size(model, imgsz)
        loggers.on_params_update({"batch_size": batch_size})

    # Optimizer
    nbs = 64  # nominal batch size
    accumulate = max(round(nbs / batch_size),
                     1)  # accumulate loss before optimizing
    hyp['weight_decay'] *= batch_size * accumulate / nbs  # scale weight_decay
    LOGGER.info(f"Scaled weight_decay = {hyp['weight_decay']}")

    g0, g1, g2 = [], [], []  # optimizer parameter groups
    for v in model.modules():
        if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):  # bias
            g2.append(v.bias)
        if isinstance(v, nn.BatchNorm2d):  # weight (no decay)
            g0.append(v.weight)
        elif hasattr(v, 'weight') and isinstance(
                v.weight, nn.Parameter):  # weight (with decay)
            g1.append(v.weight)

    if opt.optimizer == 'Adam':
        optimizer = Adam(g0, lr=hyp['lr0'],
                         betas=(hyp['momentum'],
                                0.999))  # adjust beta1 to momentum
    elif opt.optimizer == 'AdamW':
        optimizer = AdamW(g0, lr=hyp['lr0'],
                          betas=(hyp['momentum'],
                                 0.999))  # adjust beta1 to momentum
    else:
        optimizer = SGD(g0,
                        lr=hyp['lr0'],
                        momentum=hyp['momentum'],
                        nesterov=True)

    optimizer.add_param_group({
        'params': g1,
        'weight_decay': hyp['weight_decay']
    })  # add g1 with weight_decay
    optimizer.add_param_group({'params': g2})  # add g2 (biases)
    LOGGER.info(
        f"{colorstr('optimizer:')} {type(optimizer).__name__} with parameter groups "
        f"{len(g0)} weight (no decay), {len(g1)} weight, {len(g2)} bias")
    del g0, g1, g2

    # Scheduler
    if opt.cos_lr:
        lf = one_cycle(1, hyp['lrf'], epochs)  # cosine 1->hyp['lrf']
    else:
        lf = lambda x: (1 - x / epochs) * (1.0 - hyp['lrf']) + hyp['lrf'
                                                                   ]  # linear
    scheduler = lr_scheduler.LambdaLR(
        optimizer,
        lr_lambda=lf)  # plot_lr_scheduler(optimizer, scheduler, epochs)

    # EMA
    ema = ModelEMA(model) if RANK in [-1, 0] else None

    # Resume
    start_epoch, best_fitness = 0, 0.0
    if pretrained:
        # Optimizer
        if ckpt['optimizer'] is not None:
            optimizer.load_state_dict(ckpt['optimizer'])
            best_fitness = ckpt['best_fitness']

        # EMA
        if ema and ckpt.get('ema'):
            ema.ema.load_state_dict(ckpt['ema'].float().state_dict())
            ema.updates = ckpt['updates']

        # Epochs
        start_epoch = ckpt['epoch'] + 1
        if resume:
            assert start_epoch > 0, f'{weights} training to {epochs} epochs is finished, nothing to resume.'
        if epochs < start_epoch:
            LOGGER.info(
                f"{weights} has been trained for {ckpt['epoch']} epochs. Fine-tuning for {epochs} more epochs."
            )
            epochs += ckpt['epoch']  # finetune additional epochs

        del ckpt, csd

    # DP mode
    if cuda and RANK == -1 and torch.cuda.device_count() > 1:
        LOGGER.warning(
            'WARNING: DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.\n'
            'See Multi-GPU Tutorial at https://github.com/ultralytics/yolov5/issues/475 to get started.'
        )
        model = torch.nn.DataParallel(model)

    # SyncBatchNorm
    if opt.sync_bn and cuda and RANK != -1:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
        LOGGER.info('Using SyncBatchNorm()')

    # Trainloader
    train_loader, dataset = create_dataloader(
        train_path,
        imgsz,
        batch_size // WORLD_SIZE,
        gs,
        single_cls,
        hyp=hyp,
        augment=True,
        cache=None if opt.cache == 'val' else opt.cache,
        rect=opt.rect,
        rank=LOCAL_RANK,
        workers=workers,
        image_weights=opt.image_weights,
        quad=opt.quad,
        prefix=colorstr('train: '),
        shuffle=True)
    mlc = int(np.concatenate(dataset.labels, 0)[:, 0].max())  # max label class
    nb = len(train_loader)  # number of batches
    assert mlc < nc, f'Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}'

    # Process 0
    if RANK in [-1, 0]:
        val_loader = create_dataloader(val_path,
                                       imgsz,
                                       batch_size // WORLD_SIZE * 2,
                                       gs,
                                       single_cls,
                                       hyp=hyp,
                                       cache=None if noval else opt.cache,
                                       rect=True,
                                       rank=-1,
                                       workers=workers * 2,
                                       pad=0.5,
                                       prefix=colorstr('val: '))[0]

        if not resume:
            labels = np.concatenate(dataset.labels, 0)
            # c = torch.tensor(labels[:, 0])  # classes
            # cf = torch.bincount(c.long(), minlength=nc) + 1.  # frequency
            # model._initialize_biases(cf.to(device))
            if plots:
                plot_labels(labels, names, save_dir)

            # Anchors
            if not opt.noautoanchor:
                check_anchors(dataset,
                              model=model,
                              thr=hyp['anchor_t'],
                              imgsz=imgsz)
            model.half().float()  # pre-reduce anchor precision

        callbacks.run('on_pretrain_routine_end')

    # DDP mode
    if cuda and RANK != -1:
        model = DDP(model, device_ids=[LOCAL_RANK], output_device=LOCAL_RANK)

    # Model attributes
    nl = de_parallel(
        model).model[-1].nl  # number of detection layers (to scale hyps)
    hyp['box'] *= 3 / nl  # scale to layers
    hyp['cls'] *= nc / 80 * 3 / nl  # scale to classes and layers
    hyp['obj'] *= (imgsz / 640)**2 * 3 / nl  # scale to image size and layers
    hyp['label_smoothing'] = opt.label_smoothing
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.class_weights = labels_to_class_weights(
        dataset.labels, nc).to(device) * nc  # attach class weights
    model.names = names

    # Start training
    t0 = time.time()
    nw = max(round(hyp['warmup_epochs'] * nb),
             1000)  # number of warmup iterations, max(3 epochs, 1k iterations)
    # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
    last_opt_step = -1
    maps = np.zeros(nc)  # mAP per class
    results = (0, 0, 0, 0, 0, 0, 0
               )  # P, R, [email protected], [email protected], val_loss(box, obj, cls)
    scheduler.last_epoch = start_epoch - 1  # do not move
    scaler = amp.GradScaler(enabled=cuda)
    stopper = EarlyStopping(patience=opt.patience)
    compute_loss = ComputeLoss(model)  # init loss class
    LOGGER.info(
        f'Image sizes {imgsz} train, {imgsz} val\n'
        f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n'
        f"Logging results to {colorstr('bold', save_dir)}\n"
        f'Starting training for {epochs} epochs...')
    for epoch in range(
            start_epoch, epochs
    ):  # epoch ------------------------------------------------------------------
        model.train()

        # Update image weights (optional, single-GPU only)
        if opt.image_weights:
            cw = model.class_weights.cpu().numpy() * (
                1 - maps)**2 / nc  # class weights
            iw = labels_to_image_weights(dataset.labels,
                                         nc=nc,
                                         class_weights=cw)  # image weights
            dataset.indices = random.choices(range(dataset.n),
                                             weights=iw,
                                             k=dataset.n)  # rand weighted idx

        # Update mosaic border (optional)
        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders

        mloss = torch.zeros(3, device=device)  # mean losses
        if RANK != -1:
            train_loader.sampler.set_epoch(epoch)
        pbar = enumerate(train_loader)
        LOGGER.info(
            ('\n' + '%10s' * 7) %
            ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'labels', 'img_size'))
        if RANK in [-1, 0]:
            pbar = tqdm(
                pbar, total=nb,
                bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}')  # progress bar
        optimizer.zero_grad()
        for i, (
                imgs, targets, paths, _
        ) in pbar:  # batch -------------------------------------------------------------
            ni = i + nb * epoch  # number integrated batches (since train start)
            imgs = imgs.to(device, non_blocking=True).float(
            ) / 255  # uint8 to float32, 0-255 to 0.0-1.0

            # Warmup
            if ni <= nw:
                xi = [0, nw]  # x interp
                # compute_loss.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)
                accumulate = max(
                    1,
                    np.interp(ni, xi, [1, nbs / batch_size]).round())
                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    x['lr'] = np.interp(ni, xi, [
                        hyp['warmup_bias_lr'] if j == 2 else 0.0,
                        x['initial_lr'] * lf(epoch)
                    ])
                    if 'momentum' in x:
                        x['momentum'] = np.interp(
                            ni, xi, [hyp['warmup_momentum'], hyp['momentum']])

            # Multi-scale
            if opt.multi_scale:
                sz = random.randrange(imgsz * 0.5,
                                      imgsz * 1.5 + gs) // gs * gs  # size
                sf = sz / max(imgs.shape[2:])  # scale factor
                if sf != 1:
                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]
                          ]  # new shape (stretched to gs-multiple)
                    imgs = nn.functional.interpolate(imgs,
                                                     size=ns,
                                                     mode='bilinear',
                                                     align_corners=False)

            # Forward
            with amp.autocast(enabled=cuda):
                pred = model(imgs)  # forward
                loss, loss_items = compute_loss(
                    pred, targets.to(device))  # loss scaled by batch_size
                if RANK != -1:
                    loss *= WORLD_SIZE  # gradient averaged between devices in DDP mode
                if opt.quad:
                    loss *= 4.

            # Backward
            scaler.scale(loss).backward()

            # Optimize
            if ni - last_opt_step >= accumulate:
                scaler.step(optimizer)  # optimizer.step
                scaler.update()
                optimizer.zero_grad()
                if ema:
                    ema.update(model)
                last_opt_step = ni

            # Log
            if RANK in [-1, 0]:
                mloss = (mloss * i + loss_items) / (i + 1
                                                    )  # update mean losses
                mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G'  # (GB)
                pbar.set_description(('%10s' * 2 + '%10.4g' * 5) %
                                     (f'{epoch}/{epochs - 1}', mem, *mloss,
                                      targets.shape[0], imgs.shape[-1]))
                callbacks.run('on_train_batch_end', ni, model, imgs, targets,
                              paths, plots, opt.sync_bn)
                if callbacks.stop_training:
                    return
            # end batch ------------------------------------------------------------------------------------------------

        # Scheduler
        lr = [x['lr'] for x in optimizer.param_groups]  # for loggers
        scheduler.step()

        if RANK in [-1, 0]:
            # mAP
            callbacks.run('on_train_epoch_end', epoch=epoch)
            ema.update_attr(model,
                            include=[
                                'yaml', 'nc', 'hyp', 'names', 'stride',
                                'class_weights'
                            ])
            final_epoch = (epoch + 1 == epochs) or stopper.possible_stop
            if not noval or final_epoch:  # Calculate mAP
                results, maps, _ = val.run(data_dict,
                                           batch_size=batch_size //
                                           WORLD_SIZE * 2,
                                           imgsz=imgsz,
                                           model=ema.ema,
                                           single_cls=single_cls,
                                           dataloader=val_loader,
                                           save_dir=save_dir,
                                           plots=False,
                                           callbacks=callbacks,
                                           compute_loss=compute_loss)

            # Update best mAP
            fi = fitness(np.array(results).reshape(
                1, -1))  # weighted combination of [P, R, [email protected], [email protected]]
            if fi > best_fitness:
                best_fitness = fi
            log_vals = list(mloss) + list(results) + lr
            callbacks.run('on_fit_epoch_end', log_vals, epoch, best_fitness,
                          fi)

            # Save model
            if (not nosave) or (final_epoch and not evolve):  # if save
                ckpt = {
                    'epoch': epoch,
                    'best_fitness': best_fitness,
                    'model': deepcopy(de_parallel(model)).half(),
                    'ema': deepcopy(ema.ema).half(),
                    'updates': ema.updates,
                    'optimizer': optimizer.state_dict(),
                    'wandb_id':
                    loggers.wandb.wandb_run.id if loggers.wandb else None,
                    'date': datetime.now().isoformat()
                }

                # Save last, best and delete
                torch.save(ckpt, last)
                if best_fitness == fi:
                    torch.save(ckpt, best)
                if (epoch > 0) and (opt.save_period >
                                    0) and (epoch % opt.save_period == 0):
                    torch.save(ckpt, w / f'epoch{epoch}.pt')
                del ckpt
                callbacks.run('on_model_save', last, epoch, final_epoch,
                              best_fitness, fi)

            # Stop Single-GPU
            if RANK == -1 and stopper(epoch=epoch, fitness=fi):
                break

            # Stop DDP TODO: known issues shttps://github.com/ultralytics/yolov5/pull/4576
            # stop = stopper(epoch=epoch, fitness=fi)
            # if RANK == 0:
            #    dist.broadcast_object_list([stop], 0)  # broadcast 'stop' to all ranks

        # Stop DPP
        # with torch_distributed_zero_first(RANK):
        # if stop:
        #    break  # must break all DDP ranks

        # end epoch ----------------------------------------------------------------------------------------------------
    # end training -----------------------------------------------------------------------------------------------------
    if RANK in [-1, 0]:
        LOGGER.info(
            f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.'
        )
        for f in last, best:
            if f.exists():
                strip_optimizer(f)  # strip optimizers
                if f is best:
                    LOGGER.info(f'\nValidating {f}...')
                    results, _, _ = val.run(
                        data_dict,
                        batch_size=batch_size // WORLD_SIZE * 2,
                        imgsz=imgsz,
                        model=attempt_load(f, device).half(),
                        iou_thres=0.65 if is_coco else
                        0.60,  # best pycocotools results at 0.65
                        single_cls=single_cls,
                        dataloader=val_loader,
                        save_dir=save_dir,
                        save_json=is_coco,
                        verbose=True,
                        plots=True,
                        callbacks=callbacks,
                        compute_loss=compute_loss)  # val best model with plots
                    if is_coco:
                        callbacks.run('on_fit_epoch_end',
                                      list(mloss) + list(results) + lr, epoch,
                                      best_fitness, fi)

        callbacks.run('on_train_end', last, best, plots, epoch, results)
        LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}")

    torch.cuda.empty_cache()
    return results
示例#2
0
def run(
        data,
        weights=None,  # model.pt path(s)
        batch_size=32,  # batch size
        imgsz=640,  # inference size (pixels)
        conf_thres=0.001,  # confidence threshold
        iou_thres=0.6,  # NMS IoU threshold
        task='val',  # train, val, test, speed or study
        device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
        single_cls=False,  # treat as single-class dataset
        augment=False,  # augmented inference
        verbose=False,  # verbose output
        save_txt=False,  # save results to *.txt
        save_hybrid=False,  # save label+prediction hybrid results to *.txt
        save_conf=False,  # save confidences in --save-txt labels
        save_json=False,  # save a COCO-JSON results file
        project='runs/val',  # save to project/name
        name='exp',  # save to project/name
        exist_ok=False,  # existing project/name ok, do not increment
        half=True,  # use FP16 half-precision inference
        model=None,
        dataloader=None,
        save_dir=Path(''),
        plots=True,
        loggers=Loggers(),
        compute_loss=None,
):
    # Initialize/load model and set device
    training = model is not None
    if training:  # called by train.py
        device = next(model.parameters()).device  # get model device

    else:  # called directly
        device = select_device(device, batch_size=batch_size)

        # Directories
        save_dir = increment_path(Path(project) / name,
                                  exist_ok=exist_ok)  # increment run
        (save_dir / 'labels' if save_txt else save_dir).mkdir(
            parents=True, exist_ok=True)  # make dir

        # Load model
        model = attempt_load(weights, map_location=device)  # load FP32 model
        gs = max(int(model.stride.max()), 32)  # grid size (max stride)
        imgsz = check_img_size(imgsz, s=gs)  # check image size

        # Multi-GPU disabled, incompatible with .half() https://github.com/ultralytics/yolov5/issues/99
        # if device.type != 'cpu' and torch.cuda.device_count() > 1:
        #     model = nn.DataParallel(model)

        # Data
        data = check_dataset(data)  # check

    # Half
    half &= device.type != 'cpu'  # half precision only supported on CUDA
    if half:
        model.half()

    # Configure
    model.eval()
    is_coco = type(data['val']) is str and data['val'].endswith(
        'coco/val2017.txt')  # COCO dataset
    nc = 1 if single_cls else int(data['nc'])  # number of classes
    iouv = torch.linspace(0.5, 0.95,
                          10).to(device)  # iou vector for [email protected]:0.95
    niou = iouv.numel()

    # Dataloader
    if not training:
        if device.type != 'cpu':
            model(
                torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(
                    next(model.parameters())))  # run once
        task = task if task in (
            'train', 'val', 'test') else 'val'  # path to train/val/test images
        dataloader = create_dataloader(data[task],
                                       imgsz,
                                       batch_size,
                                       gs,
                                       single_cls,
                                       pad=0.5,
                                       rect=True,
                                       prefix=colorstr(f'{task}: '))[0]

    seen = 0
    confusion_matrix = ConfusionMatrix(nc=nc)
    names = {
        k: v
        for k, v in enumerate(
            model.names if hasattr(model, 'names') else model.module.names)
    }
    class_map = coco80_to_coco91_class() if is_coco else list(range(1000))
    s = ('%20s' + '%11s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R',
                                 '[email protected]', '[email protected]:.95')
    p, r, f1, mp, mr, map50, map, t0, t1, t2 = 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.
    loss = torch.zeros(3, device=device)
    jdict, stats, ap, ap_class = [], [], [], []
    for batch_i, (img, targets, paths,
                  shapes) in enumerate(tqdm(dataloader, desc=s)):
        t_ = time_sync()
        img = img.to(device, non_blocking=True)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        targets = targets.to(device)
        nb, _, height, width = img.shape  # batch size, channels, height, width
        t = time_sync()
        t0 += t - t_

        # Run model
        out, train_out = model(
            img, augment=augment)  # inference and training outputs
        t1 += time_sync() - t

        # Compute loss
        if compute_loss:
            loss += compute_loss([x.float() for x in train_out],
                                 targets)[1]  # box, obj, cls

        # Run NMS
        targets[:, 2:] *= torch.Tensor([width, height, width,
                                        height]).to(device)  # to pixels
        lb = [targets[targets[:, 0] == i, 1:]
              for i in range(nb)] if save_hybrid else []  # for autolabelling
        t = time_sync()
        out = non_max_suppression(out,
                                  conf_thres,
                                  iou_thres,
                                  labels=lb,
                                  multi_label=True,
                                  agnostic=single_cls)
        t2 += time_sync() - t

        # Statistics per image
        for si, pred in enumerate(out):
            labels = targets[targets[:, 0] == si, 1:]
            nl = len(labels)
            tcls = labels[:, 0].tolist() if nl else []  # target class
            path, shape = Path(paths[si]), shapes[si][0]
            seen += 1

            if len(pred) == 0:
                if nl:
                    stats.append((torch.zeros(0, niou, dtype=torch.bool),
                                  torch.Tensor(), torch.Tensor(), tcls))
                continue

            # Predictions
            if single_cls:
                pred[:, 5] = 0
            predn = pred.clone()
            scale_coords(img[si].shape[1:], predn[:, :4], shape,
                         shapes[si][1])  # native-space pred

            # Evaluate
            if nl:
                tbox = xywh2xyxy(labels[:, 1:5])  # target boxes
                scale_coords(img[si].shape[1:], tbox, shape,
                             shapes[si][1])  # native-space labels
                labelsn = torch.cat((labels[:, 0:1], tbox),
                                    1)  # native-space labels
                correct = process_batch(predn, labelsn, iouv)
                if plots:
                    confusion_matrix.process_batch(predn, labelsn)
            else:
                correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool)
            stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(),
                          tcls))  # (correct, conf, pcls, tcls)

            # Save/log
            if save_txt:
                save_one_txt(predn,
                             save_conf,
                             shape,
                             file=save_dir / 'labels' / (path.stem + '.txt'))
            if save_json:
                save_one_json(predn, jdict, path,
                              class_map)  # append to COCO-JSON dictionary
            loggers.on_val_batch_end(pred, predn, path, names, img[si])

        # Plot images
        if plots and batch_i < 3:
            f = save_dir / f'val_batch{batch_i}_labels.jpg'  # labels
            Thread(target=plot_images,
                   args=(img, targets, paths, f, names),
                   daemon=True).start()
            f = save_dir / f'val_batch{batch_i}_pred.jpg'  # predictions
            Thread(target=plot_images,
                   args=(img, output_to_target(out), paths, f, names),
                   daemon=True).start()

    # Compute statistics
    stats = [np.concatenate(x, 0) for x in zip(*stats)]  # to numpy
    if len(stats) and stats[0].any():
        p, r, ap, f1, ap_class = ap_per_class(*stats,
                                              plot=plots,
                                              save_dir=save_dir,
                                              names=names)
        ap50, ap = ap[:, 0], ap.mean(1)  # [email protected], [email protected]:0.95
        mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
        nt = np.bincount(stats[3].astype(np.int64),
                         minlength=nc)  # number of targets per class
    else:
        nt = torch.zeros(1)

    # Print results
    pf = '%20s' + '%11i' * 2 + '%11.3g' * 4  # print format
    print(pf % ('all', seen, nt.sum(), mp, mr, map50, map))

    # Print results per class
    if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
        for i, c in enumerate(ap_class):
            print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))

    # Print speeds
    t = tuple(x / seen * 1E3 for x in (t0, t1, t2))  # speeds per image
    if not training:
        shape = (batch_size, 3, imgsz, imgsz)
        print(
            f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {shape}'
            % t)

    # Plots
    if plots:
        confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
        loggers.on_val_end()

    # Save JSON
    if save_json and len(jdict):
        w = Path(weights[0] if isinstance(weights, list) else weights
                 ).stem if weights is not None else ''  # weights
        anno_json = str(
            Path(data.get('path', '../coco')) /
            'annotations/instances_val2017.json')  # annotations json
        pred_json = str(save_dir / f"{w}_predictions.json")  # predictions json
        print(f'\nEvaluating pycocotools mAP... saving {pred_json}...')
        with open(pred_json, 'w') as f:
            json.dump(jdict, f)

        try:  # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
            check_requirements(['pycocotools'])
            from pycocotools.coco import COCO
            from pycocotools.cocoeval import COCOeval

            anno = COCO(anno_json)  # init annotations api
            pred = anno.loadRes(pred_json)  # init predictions api
            eval = COCOeval(anno, pred, 'bbox')
            if is_coco:
                eval.params.imgIds = [
                    int(Path(x).stem) for x in dataloader.dataset.img_files
                ]  # image IDs to evaluate
            eval.evaluate()
            eval.accumulate()
            eval.summarize()
            map, map50 = eval.stats[:
                                    2]  # update results ([email protected]:0.95, [email protected])
        except Exception as e:
            print(f'pycocotools unable to run: {e}')

    # Return results
    model.float()  # for training
    if not training:
        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
        print(f"Results saved to {save_dir}{s}")
    maps = np.zeros(nc) + map
    for i, c in enumerate(ap_class):
        maps[c] = ap[i]
    return (mp, mr, map50, map,
            *(loss.cpu() / len(dataloader)).tolist()), maps, t