def result_to_csv(self): column_header = ['Class', 'Gauge #'] result_matrix = [] result_matrix.append(self.gauge_class_array) result_matrix.append(self.gauge_number_array) for percent in self.exceedance_percent: for percentille in self.percentilles: column_header.append('WIN_Tim_{}_{}'.format( percent, percentille)) column_header.append('WIN_Dur_{}_{}'.format( percent, percentille)) column_header.append('WIN_Fre_{}_{}'.format( percent, percentille)) result_matrix.append(self.timing[percent][percentille]) result_matrix.append(self.duration[percent][percentille]) result_matrix.append(self.freq[percent][percentille]) result_matrix = sort_matrix(result_matrix, 0) result_matrix = insert_column_header(result_matrix, column_header) np.savetxt("post_processedFiles/winter_highflow_POR_result_matrix.csv", result_matrix, delimiter=",", fmt="%s")
def result_to_csv(self): column_header = ['Class', 'Gauge', 'SP_Tim_10', 'SP_Dur_10', 'SP_Mag_10', 'SP_ROC_10', 'SP_Tim_50', 'SP_Dur_50', 'SP_Mag_50', 'SP_ROC_50', 'SP_Tim_90', 'SP_Dur_90', 'SP_Mag_90', 'SP_ROC_90'] result_matrix = [] result_matrix.append(self.gauge_class_array) result_matrix.append(self.gauge_number_array) for percent in self.percentilles: result_matrix.append(self.spring_timings[percent]) result_matrix.append(self.spring_durations[percent]) result_matrix.append(self.spring_magnitudes[percent]) result_matrix.append(self.spring_rocs[percent]) result_matrix = sort_matrix(result_matrix, 0) result_matrix = insert_column_header(result_matrix, column_header) np.savetxt("post_processedFiles/spring_transition_result_matrix.csv", result_matrix, delimiter=",", fmt="%s") if self.plot: smart_plot(result_matrix) """nonP plots""" SP_Tim = [] SP_Mag = [] SP_Dur = [] SP_ROC = [] for class_id in range(1,10): SP_Tim.append(self.metrics['SP_Tim'][class_id]) SP_Mag.append(self.metrics['SP_Mag'][class_id]) SP_Dur.append(self.metrics['SP_Dur'][class_id]) SP_ROC.append(self.metrics['SP_ROC'][class_id]) combined = {'SP_Tim': SP_Tim, 'SP_Mag': SP_Mag, 'SP_Dur': SP_Dur, 'SP_ROC': SP_ROC} if self.plot: nonP_box_plot(combined)
def result_to_csv(self): column_header = [ 'Class', 'Gauge', 'SU_Tim_10', 'SU_BFL_Mag_10_10', 'SU_BFL_Mag_50_10', 'SU_BFL_Dur_Flush_10', 'SU_BFL_Dur_Wet_10', 'SU_BFL_NoFlow_10', 'SU_Tim_50', 'SU_BFL_Mag_10_50', 'SU_BFL_Mag_50_50', 'SU_BFL_Dur_Flush_50', 'SU_BFL_Dur_Wet_50', 'SU_BFL_NoFlow_50', 'SU_Tim_90', 'SU_BFL_Mag_10_90', 'SU_BFL_Mag_50_90', 'SU_BFL_Dur_Flush_90', 'SU_BFL_Dur_Wet_90', 'SU_BFL_NoFlow_90' ] result_matrix = [] result_matrix.append(self.gauge_class_array) result_matrix.append(self.gauge_number_array) for percentile in self.percentilles: result_matrix.append(self.summer_timings[percentile]) result_matrix.append(self.summer_10_magnitudes[percentile]) result_matrix.append(self.summer_50_magnitudes[percentile]) result_matrix.append(self.summer_flush_durations[percentile]) result_matrix.append(self.summer_wet_durations[percentile]) result_matrix.append(self.summer_no_flow_counts[percentile]) result_matrix = sort_matrix(result_matrix, 0) result_matrix = insert_column_header(result_matrix, column_header) np.savetxt("post_processedFiles/summer_baseflow_result_matrix.csv", result_matrix, delimiter=",", fmt="%s") if self.plot: smart_plot(result_matrix) """nonP plots""" SU_BFL_Tim = [] SU_BFL_Mag_10 = [] SU_BFL_Mag_50 = [] SU_BFL_Dur_Fl = [] SU_BFL_Dur_Wet = [] SU_BFL_No_Flow = [] for class_id in range(1, 10): SU_BFL_Tim.append(self.metrics['SU_BFL_Tim'][class_id]) SU_BFL_Mag_10.append(self.metrics['SU_BFL_Mag_10'][class_id]) SU_BFL_Mag_50.append(self.metrics['SU_BFL_Mag_50'][class_id]) SU_BFL_Dur_Fl.append(self.metrics['SU_BFL_Dur_Fl'][class_id]) SU_BFL_Dur_Wet.append(self.metrics['SU_BFL_Dur_Wet'][class_id]) SU_BFL_No_Flow.append(self.metrics['SU_BFL_No_Flow'][class_id]) combined = { 'SU_BFL_Tim': SU_BFL_Tim, 'SU_BFL_Mag_10': SU_BFL_Mag_10, 'SU_BFL_Mag_50': SU_BFL_Mag_50, 'SU_BFL_Dur_Fl, ': SU_BFL_Dur_Fl, 'SU_BFL_Dur_Wet': SU_BFL_Dur_Wet, 'SU_BFL_No_Flow': SU_BFL_No_Flow } if self.plot: nonP_box_plot(combined)
def result_to_csv(self): column_header = [ 'Class', 'Gauge', 'FAFL_Tim_10%', 'FAFL_Mag_10%', 'FAFL_Dur_10%', 'FA_Tim_Wet_10%', 'FAFL_Tim_50%', 'FAFL_Mag_50%', 'FAFL_Dur_50%', 'FA_Tim_Wet_50%', 'FAFL_Tim_90%', 'FAFL_Mag_90%', 'FAFL_Dur_90%', 'FA_Tim_Wet_90%' ] result_matrix = [] result_matrix.append(self.gauge_class_array) result_matrix.append(self.gauge_number_array) for percent in self.percentilles: result_matrix.append(self.fall_timings[percent]) result_matrix.append(self.fall_magnitudes[percent]) result_matrix.append(self.fall_durations[percent]) result_matrix.append(self.fall_wet_timings[percent]) result_matrix = sort_matrix(result_matrix, 0) result_matrix = insert_column_header(result_matrix, column_header) np.savetxt("post_processedFiles/fall_flush_result_matrix.csv", result_matrix, delimiter=",", fmt="%s") if self.plot: smart_plot(result_matrix) """nonP plots""" FAFL_Tim = [] FAFL_Mag = [] FAFL_Tim_Wet = [] FAFL_Dur = [] for class_id in range(1, 10): FAFL_Tim.append(self.metrics['FAFL_Tim'][class_id]) FAFL_Mag.append(self.metrics['FAFL_Mag'][class_id]) FAFL_Tim_Wet.append(self.metrics['FAFL_Tim_Wet'][class_id]) FAFL_Dur.append(self.metrics['FAFL_Dur'][class_id]) combined = { 'FAFL_Tim': FAFL_Tim, 'FAFL_Mag': FAFL_Mag, 'FAFL_Tim_Wet': FAFL_Tim_Wet, 'FAFL_Dur': FAFL_Dur } if self.plot: nonP_box_plot(combined)
def result_to_csv(self): column_header = [ 'Class', 'Gauge', 'Avg_10%', 'Std_10%', 'CV_10%', 'Avg_50%', 'Std_50%', 'CV_50%', 'Avg_90%', 'Std_90%', 'CV_90%' ] result_matrix = [] result_matrix.append(self.gauge_class_array) result_matrix.append(self.gauge_number_array) for percent in self.percentilles: result_matrix.append(self.average_annual_flows[percent]) result_matrix.append(self.standard_deviations[percent]) result_matrix.append(self.coefficient_variations[percent]) result_matrix = sort_matrix(result_matrix, 0) result_matrix = insert_column_header(result_matrix, column_header) np.savetxt("post_processedFiles/all_year_result_matrix.csv", result_matrix, delimiter=",", fmt="%s") if self.plot: smart_plot(result_matrix) """nonP plots""" Avg = [] Std = [] CV = [] for class_id in range(1, 10): Avg.append(self.metrics['Avg'][class_id]) Std.append(self.metrics['Std'][class_id]) CV.append(self.metrics['CV'][class_id]) combined = {'Avg': Avg, 'Std': Std, 'CV': CV} if self.plot: nonP_box_plot(combined)
def create_result_csv(self): self.all_year() self.start_of_summer() self.fall_flush_timings_durations() self.summer_baseflow_durations_magnitude() self.winter_highflow_annual() self.spring_transition_timing_magnitude() self.spring_transition_duration() self.spring_transition_roc() self.fall_winter_baseflow() """Convert offset dates to non-offset dates""" spring_timings = [] summer_timings = [] fall_timings = [] fall_wet_timings = [] for index, year in enumerate(self.year_ranges): julian_start_date = datetime.strptime("{}/{}".format(self.start_date, year), "%m/%d/%Y").timetuple().tm_yday spring_timings.append(remove_offset_from_julian_date(self.spring_timings[index], julian_start_date)) summer_timings.append(remove_offset_from_julian_date(self.summer_timings[index], julian_start_date)) fall_timings.append(remove_offset_from_julian_date(self.fall_timings[index], julian_start_date)) fall_wet_timings.append(remove_offset_from_julian_date(self.fall_wet_timings[index], julian_start_date)) winter_timings = {} for percent in self.exceedance_percent: winter_timings[percent] = [] for index, year in enumerate(self.year_ranges): julian_start_date = datetime.strptime("{}/{}".format(self.start_date, year), "%m/%d/%Y").timetuple().tm_yday winter_timings[percent].append(remove_offset_from_julian_date(self.winter_timings[percent][index], julian_start_date)) low_end = general_params['annual_result_low_Percentille_filter'] high_end = general_params['annual_result_high_Percentille_filter'] """Filter data only to contain from low_end to high_end""" self.average_annual_flows = [np.nan if ele < np.nanpercentile(self.average_annual_flows, low_end) or ele > np.nanpercentile(self.average_annual_flows, high_end) else ele for index, ele in enumerate(self.average_annual_flows)] self.standard_deviations = [np.nan if ele < np.nanpercentile(self.standard_deviations, low_end) or ele > np.nanpercentile(self.standard_deviations, high_end) else ele for index, ele in enumerate(self.standard_deviations)] self.coefficient_variations = [np.nan if ele < np.nanpercentile(self.coefficient_variations, low_end) or ele > np.nanpercentile(self.coefficient_variations, high_end) else ele for index, ele in enumerate(self.coefficient_variations)] spring_timings = [np.nan if ele < np.nanpercentile(spring_timings, low_end) or ele > np.nanpercentile(spring_timings, high_end) else ele for index, ele in enumerate(spring_timings)] self.spring_magnitudes = [np.nan if ele < np.nanpercentile(self.spring_magnitudes, low_end) or ele > np.nanpercentile(self.spring_magnitudes, high_end) else ele for index, ele in enumerate(self.spring_magnitudes)] self.spring_durations = [np.nan if ele < np.nanpercentile(self.spring_durations, low_end) or ele > np.nanpercentile(self.spring_durations, high_end) else ele for index, ele in enumerate(self.spring_durations)] self.spring_rocs = [np.nan if ele < np.nanpercentile(self.spring_rocs, low_end) or ele > np.nanpercentile(self.spring_rocs, high_end) else ele for index, ele in enumerate(self.spring_rocs)] summer_timings = [np.nan if ele < np.nanpercentile(summer_timings, low_end) or ele > np.nanpercentile(summer_timings, high_end) else ele for index, ele in enumerate(summer_timings)] self.summer_10_magnitudes = [np.nan if ele < np.nanpercentile(self.summer_10_magnitudes, low_end) or ele > np.nanpercentile(self.summer_10_magnitudes, high_end) else ele for index, ele in enumerate(self.summer_10_magnitudes)] self.summer_50_magnitudes = [np.nan if ele < np.nanpercentile(self.summer_50_magnitudes, low_end) or ele > np.nanpercentile(self.summer_50_magnitudes, high_end) else ele for index, ele in enumerate(self.summer_50_magnitudes)] self.summer_flush_durations = [np.nan if ele < np.nanpercentile(self.summer_flush_durations, low_end) or ele > np.nanpercentile(self.summer_flush_durations, high_end) else ele for index, ele in enumerate(self.summer_flush_durations)] self.summer_wet_durations = [np.nan if ele < np.nanpercentile(self.summer_wet_durations, low_end) or ele > np.nanpercentile(self.summer_wet_durations, high_end) else ele for index, ele in enumerate(self.summer_wet_durations)] self.summer_no_flow_counts = [np.nan if ele < np.nanpercentile(self.summer_no_flow_counts, low_end) or ele > np.nanpercentile(self.summer_no_flow_counts, high_end) else ele for index, ele in enumerate(self.summer_no_flow_counts)] fall_timings = [np.nan if ele < np.nanpercentile(fall_timings, low_end) or ele > np.nanpercentile(fall_timings, high_end) else ele for index, ele in enumerate(fall_timings)] self.fall_magnitudes = [np.nan if ele < np.nanpercentile(self.fall_magnitudes, low_end) or ele > np.nanpercentile(self.fall_magnitudes, high_end) else ele for index, ele in enumerate(self.fall_magnitudes)] fall_wet_timings = [np.nan if ele < np.nanpercentile(fall_wet_timings, low_end) or ele > np.nanpercentile(fall_wet_timings, high_end) else ele for index, ele in enumerate(fall_wet_timings)] self.fall_durations = [np.nan if ele < np.nanpercentile(self.fall_durations, low_end) or ele > np.nanpercentile(self.fall_durations, high_end) else ele for index, ele in enumerate(self.fall_durations)] self.wet_baseflows = [np.nan if ele < np.nanpercentile(self.wet_baseflows, low_end) or ele > np.nanpercentile(self.wet_baseflows, high_end) else ele for index, ele in enumerate(self.wet_baseflows)] for percent in self.exceedance_percent: winter_timings[percent] = [np.nan if ele < np.nanpercentile(winter_timings[percent], low_end) or ele > np.nanpercentile(winter_timings[percent], high_end) else ele for index, ele in enumerate(winter_timings[percent])] self.winter_durations[percent] = [np.nan if ele < np.nanpercentile(self.winter_durations[percent], low_end) or ele > np.nanpercentile(self.winter_durations[percent], high_end) else ele for index, ele in enumerate(self.winter_durations[percent])] self.winter_frequencys[percent] = [np.nan if ele < np.nanpercentile(self.winter_frequencys[percent], low_end) or ele > np.nanpercentile(self.winter_frequencys[percent], high_end) else ele for index, ele in enumerate(self.winter_frequencys[percent])] self.winter_magnitudes[percent] = [np.nan if ele < np.nanpercentile(self.winter_magnitudes[percent], low_end) or ele > np.nanpercentile(self.winter_magnitudes[percent], high_end) else ele for index, ele in enumerate(self.winter_magnitudes[percent])] """result to CSV""" result_matrix = [] result_matrix.append(self.year_ranges) result_matrix.append(self.average_annual_flows) result_matrix.append(self.standard_deviations) result_matrix.append(self.coefficient_variations) result_matrix.append(spring_timings) result_matrix.append(self.spring_magnitudes) result_matrix.append(self.spring_durations) result_matrix.append(self.spring_rocs) result_matrix.append(summer_timings) result_matrix.append(self.summer_10_magnitudes) result_matrix.append(self.summer_50_magnitudes) result_matrix.append(self.summer_flush_durations) result_matrix.append(self.summer_wet_durations) result_matrix.append(self.summer_no_flow_counts) result_matrix.append(fall_timings) result_matrix.append(self.fall_magnitudes) result_matrix.append(fall_wet_timings) result_matrix.append(self.fall_durations) result_matrix.append(self.wet_baseflows) for percent in self.exceedance_percent: result_matrix.append(winter_timings[percent]) result_matrix.append(self.winter_durations[percent]) result_matrix.append(self.winter_frequencys[percent]) result_matrix.append(self.winter_magnitudes[percent]) column_header = ['Year', 'Avg', 'Std', 'CV', 'SP_Tim', 'SP_Mag', 'SP_Dur', 'SP_ROC', 'SU_BFL_Tim', 'SU_BFL_Mag_10', 'SU_BFL_Mag_50', 'SU_BFL_Dur_Fl', 'SU_BFL_Dur_Wet', 'SU_BFL_No_Flow', 'FAFL_Tim', 'FAFL_Mag', 'FAFL_Tim_Wet', 'FAFL_Dur', 'Wet_BFL_Mag', 'WIN_Tim_2', 'WIN_Dur_2', 'WIN_Fre_2', 'WIN_Mag_2', 'WIN_Tim_5', 'WIN_Dur_5', 'WIN_Fre_5', 'WIN_Mag_5', 'WIN_Tim_10', 'WIN_Dur_10', 'WIN_Fre_10', 'WIN_Mag_10', 'WIN_Tim_20', 'WIN_Dur_20', 'WIN_Fre_20', 'WIN_Mag_20', 'WIN_Tim_50', 'WIN_Dur_50', 'WIN_Fre_50', 'WIN_Mag_50'] # column_header = ['Year', 'Avg', 'Std', 'CV', 'SP_Tim', 'SP_Mag', 'SP_Dur', 'SP_ROC', 'SU_Tim', 'SU_Mag_10', 'SU_Mag_50', 'SU_Dur_Fl', 'SU_Dur_Wet', 'SU_No_Flow', 'FA_Tim', 'FA_Mag', 'FA_Tim_Wet', 'FA_Dur', 'Wet_BFL_Mag', 'Tim_2', 'Dur_2', 'Fre_2', 'Mag_2', 'Tim_5', 'Dur_5', 'Fre_5', 'Mag_5','Tim_10', 'Dur_10', 'Fre_10', 'Mag_10', 'Tim_20', 'Dur_20', 'Fre_20', 'Mag_20', 'Tim_50', 'Dur_50', 'Fre_50', 'Mag_50'] new_result_matrix = [] for index, row in enumerate(result_matrix): new_result_matrix.append(list(result_matrix[index])) if len(new_result_matrix) == len(column_header): new_result_matrix = insert_column_header(new_result_matrix, column_header) else: print('Column header does not have the same dimension as result matrix') np.savetxt("post_processedFiles/{}_annual_result_matrix.csv".format( int(self.gauge_number)), new_result_matrix, delimiter=",", fmt="%s")
def create_result_csv(self): self.all_year() self.start_of_summer() self.fall_flush_timings_durations() self.summer_baseflow_durations_magnitude() self.winter_highflow_annual() self.spring_transition_timing_magnitude() self.spring_transition_duration() self.spring_transition_roc() self.fall_winter_baseflow() """Convert offset dates to non-offset dates""" spring_timings_julian = [] summer_timings_julian = [] fall_timings_julian = [] fall_wet_timings_julian = [] for index, year in enumerate(self.year_ranges): julian_start_date = datetime.strptime( "{}/{}".format(self.start_date, year), "%m/%d/%Y").timetuple().tm_yday spring_timings_julian.append( remove_offset_from_julian_date(self.spring_timings[index], julian_start_date)) summer_timings_julian.append( remove_offset_from_julian_date(self.summer_timings[index], julian_start_date)) fall_timings_julian.append( remove_offset_from_julian_date(self.fall_timings[index], julian_start_date)) fall_wet_timings_julian.append( remove_offset_from_julian_date(self.fall_wet_timings[index], julian_start_date)) low_end = general_params['annual_result_low_Percentille_filter'] high_end = general_params['annual_result_high_Percentille_filter'] """Filter data only to contain from low_end to high_end""" self.average_annual_flows = [ np.nan if ele < np.nanpercentile(self.average_annual_flows, low_end) or ele > np.nanpercentile(self.average_annual_flows, high_end) else ele for index, ele in enumerate(self.average_annual_flows) ] self.standard_deviations = [ np.nan if ele < np.nanpercentile(self.standard_deviations, low_end) or ele > np.nanpercentile(self.standard_deviations, high_end) else ele for index, ele in enumerate(self.standard_deviations) ] self.coefficient_variations = [ np.nan if ele < np.nanpercentile(self.coefficient_variations, low_end) or ele > np.nanpercentile(self.coefficient_variations, high_end) else ele for index, ele in enumerate(self.coefficient_variations) ] spring_timings = [ np.nan if ele < np.nanpercentile(self.spring_timings, low_end) or ele > np.nanpercentile(self.spring_timings, high_end) else ele for index, ele in enumerate(self.spring_timings) ] spring_timings_julian = [ np.nan if ele < np.nanpercentile(spring_timings_julian, low_end) or ele > np.nanpercentile(spring_timings_julian, high_end) else ele for index, ele in enumerate(spring_timings_julian) ] self.spring_magnitudes = [ np.nan if ele < np.nanpercentile(self.spring_magnitudes, low_end) or ele > np.nanpercentile(self.spring_magnitudes, high_end) else ele for index, ele in enumerate(self.spring_magnitudes) ] self.spring_durations = [ np.nan if ele < np.nanpercentile(self.spring_durations, low_end) or ele > np.nanpercentile(self.spring_durations, high_end) else ele for index, ele in enumerate(self.spring_durations) ] self.spring_rocs = [ np.nan if ele < np.nanpercentile(self.spring_rocs, low_end) or ele > np.nanpercentile(self.spring_rocs, high_end) else ele for index, ele in enumerate(self.spring_rocs) ] summer_timings = [ np.nan if ele < np.nanpercentile(self.summer_timings, low_end) or ele > np.nanpercentile(self.summer_timings, high_end) else ele for index, ele in enumerate(self.summer_timings) ] summer_timings_julian = [ np.nan if ele < np.nanpercentile(summer_timings_julian, low_end) or ele > np.nanpercentile(summer_timings_julian, high_end) else ele for index, ele in enumerate(summer_timings_julian) ] self.summer_90_magnitudes = [ np.nan if ele < np.nanpercentile(self.summer_90_magnitudes, low_end) or ele > np.nanpercentile(self.summer_90_magnitudes, high_end) else ele for index, ele in enumerate(self.summer_90_magnitudes) ] self.summer_50_magnitudes = [ np.nan if ele < np.nanpercentile(self.summer_50_magnitudes, low_end) or ele > np.nanpercentile(self.summer_50_magnitudes, high_end) else ele for index, ele in enumerate(self.summer_50_magnitudes) ] self.summer_flush_durations = [ np.nan if ele < np.nanpercentile(self.summer_flush_durations, low_end) or ele > np.nanpercentile(self.summer_flush_durations, high_end) else ele for index, ele in enumerate(self.summer_flush_durations) ] self.summer_wet_durations = [ np.nan if ele < np.nanpercentile(self.summer_wet_durations, low_end) or ele > np.nanpercentile(self.summer_wet_durations, high_end) else ele for index, ele in enumerate(self.summer_wet_durations) ] self.summer_no_flow_counts = [ np.nan if ele < np.nanpercentile(self.summer_no_flow_counts, low_end) or ele > np.nanpercentile(self.summer_no_flow_counts, high_end) else ele for index, ele in enumerate(self.summer_no_flow_counts) ] fall_timings = [ np.nan if ele < np.nanpercentile(self.fall_timings, low_end) or ele > np.nanpercentile(self.fall_timings, high_end) else ele for index, ele in enumerate(self.fall_timings) ] fall_timings_julian = [ np.nan if ele < np.nanpercentile(fall_timings_julian, low_end) or ele > np.nanpercentile(fall_timings_julian, high_end) else ele for index, ele in enumerate(fall_timings_julian) ] self.fall_magnitudes = [ np.nan if ele < np.nanpercentile(self.fall_magnitudes, low_end) or ele > np.nanpercentile(self.fall_magnitudes, high_end) else ele for index, ele in enumerate(self.fall_magnitudes) ] fall_wet_timings = [ np.nan if ele < np.nanpercentile(self.fall_wet_timings, low_end) or ele > np.nanpercentile(self.fall_wet_timings, high_end) else ele for index, ele in enumerate(self.fall_wet_timings) ] fall_wet_timings_julian = [ np.nan if ele < np.nanpercentile(fall_wet_timings_julian, low_end) or ele > np.nanpercentile(fall_wet_timings_julian, high_end) else ele for index, ele in enumerate(fall_wet_timings_julian) ] self.fall_durations = [ np.nan if ele < np.nanpercentile(self.fall_durations, low_end) or ele > np.nanpercentile(self.fall_durations, high_end) else ele for index, ele in enumerate(self.fall_durations) ] self.wet_baseflows_10 = [ np.nan if ele < np.nanpercentile(self.wet_baseflows_10, low_end) or ele > np.nanpercentile(self.wet_baseflows_10, high_end) else ele for index, ele in enumerate(self.wet_baseflows_10) ] self.wet_baseflows_50 = [ np.nan if ele < np.nanpercentile(self.wet_baseflows_50, low_end) or ele > np.nanpercentile(self.wet_baseflows_50, high_end) else ele for index, ele in enumerate(self.wet_baseflows_50) ] self.wet_bfl_durs = [ np.nan if ele < np.nanpercentile(self.wet_bfl_durs, low_end) or ele > np.nanpercentile(self.wet_bfl_durs, high_end) else ele for index, ele in enumerate(self.wet_bfl_durs) ] all_exceedances = [2, 5, 10, 20, 50, 12, 15, 110, 120] for percent in all_exceedances: # self.winter_timings[percent] = [np.nan if ele < np.nanpercentile(self.winter_timings[percent], low_end) or ele > np.nanpercentile( # self.winter_timings[percent], high_end) else ele for index, ele in enumerate(self.winter_timings[percent])] self.winter_durations[percent] = [ np.nan if ele < np.nanpercentile(self.winter_durations[percent], low_end) or ele > np.nanpercentile(self.winter_durations[percent], high_end) else ele for index, ele in enumerate(self.winter_durations[percent]) ] self.winter_frequencys[percent] = [ np.nan if ele < np.nanpercentile( self.winter_frequencys[percent], low_end) or ele > np.nanpercentile(self.winter_frequencys[percent], high_end) else ele for index, ele in enumerate(self.winter_frequencys[percent]) ] self.winter_magnitudes[percent] = [ np.nan if ele < np.nanpercentile( self.winter_magnitudes[percent], low_end) or ele > np.nanpercentile(self.winter_magnitudes[percent], high_end) else ele for index, ele in enumerate(self.winter_magnitudes[percent]) ] """result to CSV""" result_matrix = [] self.year_ranges = [year + 1 for year in self.year_ranges] result_matrix.append(self.year_ranges) result_matrix.append(self.average_annual_flows) result_matrix.append(self.standard_deviations) result_matrix.append(self.coefficient_variations) result_matrix.append(spring_timings) # result_matrix.append(spring_timings_julian) result_matrix.append(self.spring_magnitudes) result_matrix.append(self.spring_durations) result_matrix.append(self.spring_rocs) result_matrix.append(summer_timings) # result_matrix.append(summer_timings_julian) result_matrix.append(self.summer_90_magnitudes) result_matrix.append(self.summer_50_magnitudes) # result_matrix.append(self.summer_flush_durations) result_matrix.append(self.summer_wet_durations) result_matrix.append(self.summer_no_flow_counts) result_matrix.append(fall_timings) # result_matrix.append(fall_timings_julian) result_matrix.append(self.fall_magnitudes) result_matrix.append(fall_wet_timings) # result_matrix.append(fall_wet_timings_julian) result_matrix.append(self.fall_durations) result_matrix.append(self.wet_baseflows_10) result_matrix.append(self.wet_baseflows_50) result_matrix.append(self.wet_bfl_durs) # all_exceedances = [2, 5, 10, 20, 50, 12, 15, 110, 120] # only ouput peak flows all_exceedances = [2, 5, 10, 20, 50] for percent in all_exceedances: # result_matrix.append(self.winter_timings[percent]) result_matrix.append(self.winter_durations[percent]) result_matrix.append(self.winter_frequencys[percent]) result_matrix.append(self.winter_magnitudes[percent]) column_header = [ 'Year', 'Avg', 'Std', 'CV', 'SP_Tim', 'SP_Mag', 'SP_Dur', 'SP_ROC', 'DS_Tim', 'DS_Mag_90', 'DS_Mag_50', 'DS_Dur_WS', 'DS_No_Flow', 'FA_Tim', 'FA_Mag', 'Wet_Tim', 'FA_Dur', 'Wet_BFL_Mag_10', 'Wet_BFL_Mag_50', 'Wet_BFL_Dur', 'Peak_Dur_2', 'Peak_Fre_2', 'Peak_2', 'Peak_Dur_5', 'Peak_Fre_5', 'Peak_5', 'Peak_Dur_10', 'Peak_Fre_10', 'Peak_10', 'Peak_Dur_20', 'Peak_Fre_20', 'Peak_20', 'Peak_Dur_50', 'Peak_Fre_50', 'Peak_50' ] # OMG not me again.... # column_header = ['Year', 'Avg', 'Std', 'CV', 'SP_Tim', 'SP_Mag', 'SP_Dur', 'SP_ROC', 'SU_Tim', 'SU_Mag_10', 'SU_Mag_50', 'SU_Dur_Fl', 'SU_Dur_Wet', 'SU_No_Flow', 'FA_Tim', 'FA_Mag', 'FA_Tim_Wet', 'FA_Dur', # 'Wet_BFL_Mag', 'Tim_2', 'Dur_2', 'Fre_2', 'Mag_2', 'Tim_5', 'Dur_5', 'Fre_5', 'Mag_5', 'Tim_10', 'Dur_10', 'Fre_10', 'Mag_10', 'Tim_20', 'Dur_20', 'Fre_20', 'Mag_20', 'Tim_50', 'Dur_50', 'Fre_50', 'Mag_50'] wateryear_type_matrix = create_wateryear_labels(result_matrix) np.savetxt("post_processedFiles/Wateryear_Type/{}.csv".format( int(self.gauge_number)), wateryear_type_matrix, delimiter=",", fmt="%s") new_result_matrix = [] for index, _ in enumerate(result_matrix): new_result_matrix.append(list(result_matrix[index])) if len(new_result_matrix) == len(column_header): new_result_matrix = insert_column_header(new_result_matrix, column_header) else: print( 'Column header does not have the same dimension as result matrix' ) np.savetxt( "post_processedFiles/Class-{}/{}_annual_result_matrix.csv".format( int(self.class_number), int(self.gauge_number)), new_result_matrix, delimiter=",", fmt="%s") '''File format for FFC QA data input'''
def result_to_csv(self): column_header = ['Class', 'Gauge #'] result_matrix = [] result_matrix.append(self.gauge_class_array) result_matrix.append(self.gauge_number_array) # only output percentiles 10, 20, 50 for percent in [50, 20, 10]: for percentille in self.percentilles: # Exceedance percentiles translated to recurrence intervals for output: exc_50 -> peak_2, exc_20 -> peak_5, exc_10 -> peak_10 if percent == 50: name = 2 if percent == 20: name = 5 if percent == 10: name = 10 # column_header.append('Peak_Tim_{}_{}'.format(name, percentille)) column_header.append('Peak_Dur_{}_{}'.format( name, percentille)) column_header.append('Peak_Fre_{}_{}'.format( name, percentille)) column_header.append('Peak{}_{}'.format(name, percentille)) # result_matrix.append(self.timing[percent][percentille]) result_matrix.append(self.duration[percent][percentille]) result_matrix.append(self.freq[percent][percentille]) result_matrix.append(self.mag[percent][percentille]) result_matrix = sort_matrix(result_matrix, 0) result_matrix = insert_column_header(result_matrix, column_header) np.savetxt("post_processedFiles/winter_highflow_result_matrix.csv", result_matrix, delimiter=",", fmt="%s") if self.plot: smart_plot(result_matrix) """nonP plots""" WIN_Tim_2 = [] WIN_Dur_2 = [] WIN_Fre_2 = [] WIN_Mag_2 = [] WIN_Tim_5 = [] WIN_Dur_5 = [] WIN_Fre_5 = [] WIN_Mag_5 = [] WIN_Tim_10 = [] WIN_Dur_10 = [] WIN_Fre_10 = [] WIN_Mag_10 = [] WIN_Tim_20 = [] WIN_Dur_20 = [] WIN_Fre_20 = [] WIN_Mag_20 = [] WIN_Tim_50 = [] WIN_Dur_50 = [] WIN_Fre_50 = [] WIN_Mag_50 = [] for class_id in range(1, 10): WIN_Tim_2.append(self.metrics['WIN_Tim_2'][class_id]) WIN_Dur_2.append(self.metrics['WIN_Dur_2'][class_id]) WIN_Fre_2.append(self.metrics['WIN_Fre_2'][class_id]) WIN_Fre_2.append(self.metrics['WIN_Mag_2'][class_id]) WIN_Tim_5.append(self.metrics['WIN_Tim_5'][class_id]) WIN_Dur_5.append(self.metrics['WIN_Dur_5'][class_id]) WIN_Fre_5.append(self.metrics['WIN_Fre_5'][class_id]) WIN_Fre_5.append(self.metrics['WIN_Mag_5'][class_id]) WIN_Tim_10.append(self.metrics['WIN_Tim_10'][class_id]) WIN_Dur_10.append(self.metrics['WIN_Dur_10'][class_id]) WIN_Fre_10.append(self.metrics['WIN_Fre_10'][class_id]) WIN_Fre_10.append(self.metrics['WIN_Mag_10'][class_id]) WIN_Tim_20.append(self.metrics['WIN_Tim_20'][class_id]) WIN_Dur_20.append(self.metrics['WIN_Dur_20'][class_id]) WIN_Fre_20.append(self.metrics['WIN_Fre_20'][class_id]) WIN_Fre_20.append(self.metrics['WIN_Mag_20'][class_id]) WIN_Tim_50.append(self.metrics['WIN_Tim_50'][class_id]) WIN_Dur_50.append(self.metrics['WIN_Dur_50'][class_id]) WIN_Fre_50.append(self.metrics['WIN_Fre_50'][class_id]) WIN_Fre_50.append(self.metrics['WIN_Mag_50'][class_id]) combined = { 'WIN_Tim_2': WIN_Tim_2, 'WIN_Dur_2': WIN_Dur_2, 'WIN_Fre_2': WIN_Fre_2, 'WIN_Mag_2': WIN_Mag_2, 'WIN_Tim_5': WIN_Tim_5, 'WIN_Dur_5': WIN_Dur_5, 'WIN_Fre_5': WIN_Fre_5, 'WIN_Mag_5': WIN_Mag_5, 'WIN_Tim_10': WIN_Tim_10, 'WIN_Dur_10': WIN_Dur_10, 'WIN_Fre_10': WIN_Fre_10, 'WIN_Mag_10': WIN_Mag_10, 'WIN_Tim_20': WIN_Tim_20, 'WIN_Dur_20': WIN_Dur_20, 'WIN_Fre_20': WIN_Fre_20, 'WIN_Mag_20': WIN_Mag_20, 'WIN_Tim_50': WIN_Tim_50, 'WIN_Dur_50': WIN_Dur_50, 'WIN_Fre_50': WIN_Fre_50, 'WIN_Mag_50': WIN_Mag_50 } if self.plot: nonP_box_plot(combined)
def create_result_csv(self): self.all_year() self.start_of_summer() self.fall_flush_timings_durations() self.summer_baseflow_durations_magnitude() self.winter_highflow_annual() self.spring_transition_timing_magnitude() self.spring_transition_duration() self.spring_transition_roc() self.fall_winter_baseflow() """Convert offset dates to non-offset dates""" spring_timings = [] summer_timings = [] fall_timings = [] fall_wet_timings = [] for index, year in enumerate(self.year_ranges): julian_start_date = datetime.strptime( "{}/{}".format(self.start_date, year), "%m/%d/%Y").timetuple().tm_yday spring_timings.append( remove_offset_from_julian_date(self.spring_timings[index], julian_start_date)) summer_timings.append( remove_offset_from_julian_date(self.summer_timings[index], julian_start_date)) fall_timings.append( remove_offset_from_julian_date(self.fall_timings[index], julian_start_date)) fall_wet_timings.append( remove_offset_from_julian_date(self.fall_wet_timings[index], julian_start_date)) winter_timings = {} for percent in self.exceedance_percent: winter_timings[percent] = [] for index, year in enumerate(self.year_ranges): julian_start_date = datetime.strptime( "{}/{}".format(self.start_date, year), "%m/%d/%Y").timetuple().tm_yday winter_timings[percent].append( remove_offset_from_julian_date( self.winter_timings[percent][index], julian_start_date)) low_end = general_params['annual_result_low_Percentille_filter'] high_end = general_params['annual_result_high_Percentille_filter'] #sigma = summer_params['sigma'] """Filter data only to contain from low_end to high_end""" self.average_annual_flows = [ np.nan if ele < np.nanpercentile(self.average_annual_flows, low_end) or ele > np.nanpercentile(self.average_annual_flows, high_end) else ele for index, ele in enumerate(self.average_annual_flows) ] self.standard_deviations = [ np.nan if ele < np.nanpercentile(self.standard_deviations, low_end) or ele > np.nanpercentile(self.standard_deviations, high_end) else ele for index, ele in enumerate(self.standard_deviations) ] self.coefficient_variations = [ np.nan if ele < np.nanpercentile(self.coefficient_variations, low_end) or ele > np.nanpercentile(self.coefficient_variations, high_end) else ele for index, ele in enumerate(self.coefficient_variations) ] spring_timings = [ np.nan if ele < np.nanpercentile(spring_timings, low_end) or ele > np.nanpercentile(spring_timings, high_end) else ele for index, ele in enumerate(spring_timings) ] self.spring_magnitudes = [ np.nan if ele < np.nanpercentile(self.spring_magnitudes, low_end) or ele > np.nanpercentile(self.spring_magnitudes, high_end) else ele for index, ele in enumerate(self.spring_magnitudes) ] self.spring_durations = [ np.nan if ele < np.nanpercentile(self.spring_durations, low_end) or ele > np.nanpercentile(self.spring_durations, high_end) else ele for index, ele in enumerate(self.spring_durations) ] self.spring_rocs = [ np.nan if ele < np.nanpercentile(self.spring_rocs, low_end) or ele > np.nanpercentile(self.spring_rocs, high_end) else ele for index, ele in enumerate(self.spring_rocs) ] summer_timings = [ np.nan if ele < np.nanpercentile(summer_timings, low_end) or ele > np.nanpercentile(summer_timings, high_end) else ele for index, ele in enumerate(summer_timings) ] self.summer_10_magnitudes = [ np.nan if ele < np.nanpercentile(self.summer_10_magnitudes, low_end) or ele > np.nanpercentile(self.summer_10_magnitudes, high_end) else ele for index, ele in enumerate(self.summer_10_magnitudes) ] self.summer_50_magnitudes = [ np.nan if ele < np.nanpercentile(self.summer_50_magnitudes, low_end) or ele > np.nanpercentile(self.summer_50_magnitudes, high_end) else ele for index, ele in enumerate(self.summer_50_magnitudes) ] self.summer_flush_durations = [ np.nan if ele < np.nanpercentile(self.summer_flush_durations, low_end) or ele > np.nanpercentile(self.summer_flush_durations, high_end) else ele for index, ele in enumerate(self.summer_flush_durations) ] self.summer_wet_durations = [ np.nan if ele < np.nanpercentile(self.summer_wet_durations, low_end) or ele > np.nanpercentile(self.summer_wet_durations, high_end) else ele for index, ele in enumerate(self.summer_wet_durations) ] self.summer_no_flow_counts = [ np.nan if ele < np.nanpercentile(self.summer_no_flow_counts, low_end) or ele > np.nanpercentile(self.summer_no_flow_counts, high_end) else ele for index, ele in enumerate(self.summer_no_flow_counts) ] fall_timings = [ np.nan if ele < np.nanpercentile(fall_timings, low_end) or ele > np.nanpercentile(fall_timings, high_end) else ele for index, ele in enumerate(fall_timings) ] self.fall_magnitudes = [ np.nan if ele < np.nanpercentile(self.fall_magnitudes, low_end) or ele > np.nanpercentile(self.fall_magnitudes, high_end) else ele for index, ele in enumerate(self.fall_magnitudes) ] fall_wet_timings = [ np.nan if ele < np.nanpercentile(fall_wet_timings, low_end) or ele > np.nanpercentile(fall_wet_timings, high_end) else ele for index, ele in enumerate(fall_wet_timings) ] self.fall_durations = [ np.nan if ele < np.nanpercentile(self.fall_durations, low_end) or ele > np.nanpercentile(self.fall_durations, high_end) else ele for index, ele in enumerate(self.fall_durations) ] self.wet_baseflows = [ np.nan if ele < np.nanpercentile(self.wet_baseflows, low_end) or ele > np.nanpercentile(self.wet_baseflows, high_end) else ele for index, ele in enumerate(self.wet_baseflows) ] for percent in self.exceedance_percent: winter_timings[percent] = [ np.nan if ele < np.nanpercentile(winter_timings[percent], low_end) or ele > np.nanpercentile(winter_timings[percent], high_end) else ele for index, ele in enumerate(winter_timings[percent]) ] self.winter_durations[percent] = [ np.nan if ele < np.nanpercentile(self.winter_durations[percent], low_end) or ele > np.nanpercentile(self.winter_durations[percent], high_end) else ele for index, ele in enumerate(self.winter_durations[percent]) ] self.winter_frequencys[percent] = [ np.nan if ele < np.nanpercentile( self.winter_frequencys[percent], low_end) or ele > np.nanpercentile(self.winter_frequencys[percent], high_end) else ele for index, ele in enumerate(self.winter_frequencys[percent]) ] self.winter_magnitudes[percent] = [ np.nan if ele < np.nanpercentile( self.winter_magnitudes[percent], low_end) or ele > np.nanpercentile(self.winter_magnitudes[percent], high_end) else ele for index, ele in enumerate(self.winter_magnitudes[percent]) ] """result to CSV""" result_matrix = [] self.year_ranges = [year + 1 for year in self.year_ranges] result_matrix.append(self.year_ranges) result_matrix.append(self.average_annual_flows) result_matrix.append(self.standard_deviations) result_matrix.append(self.coefficient_variations) result_matrix.append(spring_timings) result_matrix.append(self.spring_magnitudes) result_matrix.append(self.spring_durations) result_matrix.append(self.spring_rocs) result_matrix.append(summer_timings) result_matrix.append(self.summer_10_magnitudes) result_matrix.append(self.summer_50_magnitudes) result_matrix.append(self.summer_flush_durations) result_matrix.append(self.summer_wet_durations) result_matrix.append(self.summer_no_flow_counts) result_matrix.append(fall_timings) result_matrix.append(self.fall_magnitudes) result_matrix.append(fall_wet_timings) result_matrix.append(self.fall_durations) result_matrix.append(self.wet_baseflows) for percent in self.exceedance_percent: result_matrix.append(winter_timings[percent]) result_matrix.append(self.winter_durations[percent]) result_matrix.append(self.winter_frequencys[percent]) result_matrix.append(self.winter_magnitudes[percent]) column_header = [ 'Year', 'Avg', 'Std', 'CV', 'SP_Tim', 'SP_Mag', 'SP_Dur', 'SP_ROC', 'DS_Tim', 'DS_Mag_10', 'DS_Mag_50', 'DS_Dur_WSI', 'DS_Dur_WS', 'DS_No_Flow', 'WSI_Tim', 'WSI_Mag', 'Wet_Tim', 'WSI_Dur', 'Wet_BFL_Mag', 'Peak_Tim_2', 'Peak_Dur_2', 'Peak_Fre_2', 'Peak_Mag_2', 'Peak_Tim_5', 'Peak_Dur_5', 'Peak_Fre_5', 'Peak_Mag_5', 'Peak_Tim_10', 'Peak_Dur_10', 'Peak_Fre_10', 'Peak_Mag_10', 'Peak_Tim_20', 'Peak_Dur_20', 'Peak_Fre_20', 'Peak_Mag_20', 'Peak_Tim_50', 'Peak_Dur_50', 'Peak_Fre_50', 'Peak_Mag_50' ] # OMG not me again.... # column_header = ['Year', 'Avg', 'Std', 'CV', 'SP_Tim', 'SP_Mag', 'SP_Dur', 'SP_ROC', 'SU_Tim', 'SU_Mag_10', 'SU_Mag_50', 'SU_Dur_Fl', 'SU_Dur_Wet', 'SU_No_Flow', 'FA_Tim', 'FA_Mag', 'FA_Tim_Wet', 'FA_Dur', # 'Wet_BFL_Mag', 'Tim_2', 'Dur_2', 'Fre_2', 'Mag_2', 'Tim_5', 'Dur_5', 'Fre_5', 'Mag_5', 'Tim_10', 'Dur_10', 'Fre_10', 'Mag_10', 'Tim_20', 'Dur_20', 'Fre_20', 'Mag_20', 'Tim_50', 'Dur_50', 'Fre_50', 'Mag_50'] wateryear_type_matrix = create_wateryear_labels(result_matrix) np.savetxt("post_processedFiles/Wateryear_Type/{}.csv".format( int(self.gauge_number)), wateryear_type_matrix, delimiter=",", fmt="%s") new_result_matrix = [] for index, _ in enumerate(result_matrix): new_result_matrix.append(list(result_matrix[index])) if len(new_result_matrix) == len(column_header): new_result_matrix = insert_column_header(new_result_matrix, column_header) else: print( 'Column header does not have the same dimension as result matrix' ) # remove 50 percentile values from final matrix. Will need to update this code if variables are added or deleted. if len(new_result_matrix) > 35: new_result_matrix = new_result_matrix[:-4] np.savetxt( "post_processedFiles/{}_sigma{}_annual_result_matrix.csv".format( int(self.gauge_number), int(sigmaa)), new_result_matrix, delimiter=",", fmt="%s") #1/29/2019 adding sigma to the name in the two lines above '''File format for FFC QA data input'''
def result_to_csv(self): column_header = ['Class', 'Gauge #'] result_matrix = [] result_matrix.append(self.gauge_class_array) result_matrix.append(self.gauge_number_array) for percent in self.exceedance_percent: for percentille in self.percentilles: column_header.append('WIN_Tim_{}_{}'.format( percent, percentille)) column_header.append('WIN_Dur_{}_{}'.format( percent, percentille)) column_header.append('WIN_Fre_{}_{}'.format( percent, percentille)) column_header.append('WIN_Mag_{}_{}'.format( percent, percentille)) result_matrix.append(self.timing[percent][percentille]) result_matrix.append(self.duration[percent][percentille]) result_matrix.append(self.freq[percent][percentille]) result_matrix.append(self.mag[percent][percentille]) result_matrix = sort_matrix(result_matrix, 0) result_matrix = insert_column_header(result_matrix, column_header) np.savetxt("post_processedFiles/winter_highflow_result_matrix.csv", result_matrix, delimiter=",", fmt="%s") if self.plot: smart_plot(result_matrix) """nonP plots""" WIN_Tim_2 = [] WIN_Dur_2 = [] WIN_Fre_2 = [] WIN_Mag_2 = [] WIN_Tim_5 = [] WIN_Dur_5 = [] WIN_Fre_5 = [] WIN_Mag_5 = [] WIN_Tim_10 = [] WIN_Dur_10 = [] WIN_Fre_10 = [] WIN_Mag_10 = [] WIN_Tim_20 = [] WIN_Dur_20 = [] WIN_Fre_20 = [] WIN_Mag_20 = [] WIN_Tim_50 = [] WIN_Dur_50 = [] WIN_Fre_50 = [] WIN_Mag_50 = [] for class_id in range(1, 10): WIN_Tim_2.append(self.metrics['WIN_Tim_2'][class_id]) WIN_Dur_2.append(self.metrics['WIN_Dur_2'][class_id]) WIN_Fre_2.append(self.metrics['WIN_Fre_2'][class_id]) WIN_Fre_2.append(self.metrics['WIN_Mag_2'][class_id]) WIN_Tim_5.append(self.metrics['WIN_Tim_5'][class_id]) WIN_Dur_5.append(self.metrics['WIN_Dur_5'][class_id]) WIN_Fre_5.append(self.metrics['WIN_Fre_5'][class_id]) WIN_Fre_5.append(self.metrics['WIN_Mag_5'][class_id]) WIN_Tim_10.append(self.metrics['WIN_Tim_10'][class_id]) WIN_Dur_10.append(self.metrics['WIN_Dur_10'][class_id]) WIN_Fre_10.append(self.metrics['WIN_Fre_10'][class_id]) WIN_Fre_10.append(self.metrics['WIN_Mag_10'][class_id]) WIN_Tim_20.append(self.metrics['WIN_Tim_20'][class_id]) WIN_Dur_20.append(self.metrics['WIN_Dur_20'][class_id]) WIN_Fre_20.append(self.metrics['WIN_Fre_20'][class_id]) WIN_Fre_20.append(self.metrics['WIN_Mag_20'][class_id]) WIN_Tim_50.append(self.metrics['WIN_Tim_50'][class_id]) WIN_Dur_50.append(self.metrics['WIN_Dur_50'][class_id]) WIN_Fre_50.append(self.metrics['WIN_Fre_50'][class_id]) WIN_Fre_50.append(self.metrics['WIN_Mag_50'][class_id]) combined = { 'WIN_Tim_2': WIN_Tim_2, 'WIN_Dur_2': WIN_Dur_2, 'WIN_Fre_2': WIN_Fre_2, 'WIN_Mag_2': WIN_Mag_2, 'WIN_Tim_5': WIN_Tim_5, 'WIN_Dur_5': WIN_Dur_5, 'WIN_Fre_5': WIN_Fre_5, 'WIN_Mag_5': WIN_Mag_5, 'WIN_Tim_10': WIN_Tim_10, 'WIN_Dur_10': WIN_Dur_10, 'WIN_Fre_10': WIN_Fre_10, 'WIN_Mag_10': WIN_Mag_10, 'WIN_Tim_20': WIN_Tim_20, 'WIN_Dur_20': WIN_Dur_20, 'WIN_Fre_20': WIN_Fre_20, 'WIN_Mag_20': WIN_Mag_20, 'WIN_Tim_50': WIN_Tim_50, 'WIN_Dur_50': WIN_Dur_50, 'WIN_Fre_50': WIN_Fre_50, 'WIN_Mag_50': WIN_Mag_50 } if self.plot: nonP_box_plot(combined)