示例#1
0
    async def send_command_help(self, command):
        doc = Embed.from_dict({
            'title': f'{self.clean_prefix}{command.name} {command.signature}',
            'description': command.help,
            'color': get_color().value
        })

        if command.aliases:
            doc.add_field(name='Aliases',
                          inline=True,
                          value=', '.join(command.aliases))
        if command.cog:
            doc.add_field(name='Category',
                          inline=True,
                          value=command.cog.qualified_name)

        if command._max_concurrency and getattr(
                command._max_concurrency, 'per', None) != BucketType.default:
            doc.add_field(name='Concurrency',
                          value='**%s** time(s) per **%s**' %
                          (command._max_concurrency.number,
                           command._max_concurrency.per.name),
                          inline=True)

        await self.get_destination().send(embed=doc)
示例#2
0
文件: fun.py 项目: tripulse/triabot
    async def meme(self, ctx, site=None):
        """Fetch a meme from a defined or a random resource (always an image)"""

        if not site:
            site = random.choice([*self._generators.keys()])

        try:
            pic, info = self._generators[site]()
        except KeyError:
            raise BadArgument("Not a valid site from the list of sites")

        await ctx.send(embed=Embed.from_dict({
            'image': {
                'url': pic
            },
            'title':
            info.get('title', ''),
            'author': {
                'name': info.get('author', '')
            },
            'timestamp':
            call(getattr(info.get('creation'), 'isoformat', None), ''),
            'color':
            get_color().value
        }))
示例#3
0
def projection_dim_exp_fig():
    import matplotlib
    matplotlib.use('Agg')
    import matplotlib.pyplot as plt

    for ds in ['mini', 'tiered']:
        ax = plt.subplot(111)
        with open(f'exp_projection_dim_{ds}.pickle', 'rb') as handle:
            exp_dict = pickle.load(handle)
            x = exp_dict['args']

        y_lim = np.inf
        for part in ['val', 'test']:
            name = f'{part}'
            res, _ = exp_dict[name]
            plt.plot(x, res, label=name, color=get_color(name), linewidth=2)
            y_lim = min(y_lim, np.min(res))

        ax.legend(loc='lower center', fancybox=True, shadow=True, ncol=3)
        # plt.ylim(bottom=y_lim - 1)
        plt.grid()
        fig = plt.figure(1)
        plt.xlabel("reduced dimension")
        plt.ylabel("accuracy")
        plt.savefig(f"projection-dim-exp-{ds}.png")
        plt.close(fig)
示例#4
0
def n_query_exp_fig():
    import matplotlib
    matplotlib.use('Agg')
    import matplotlib.pyplot as plt

    for ds in ['mini', 'tiered']:
        with open(f'exp_n_queries_{ds}.pickle', 'rb') as handle:
            exp_dict = pickle.load(handle)

        x = np.array(list(exp_dict.keys()))
        values = np.array(list(exp_dict.values()))
        y = values[:, 0, :]

        ax = plt.subplot(111)
        exp_name = ['simple', 'sub', 'ica', 'ica & bkm', 'ica & msp']
        y_lim = None
        for n in [*range(y.shape[1])]:
            # plt.plot(x, y[:, n].reshape(-1, ), label=exp_name[n])
            plt.plot(x[1:], y[:, n].reshape(-1, )[1:], label=exp_name[n], color=get_color(exp_name[n]), linewidth=2)
            if exp_name[n] == 'simple':
                y_lim = np.min(y[:, n])

        ax.legend(loc='lower center', fancybox=True, shadow=True, ncol=3)
        plt.ylim(bottom=y_lim - 3)
        plt.grid()
        fig = plt.figure(1)
        plt.xlabel("queries")
        plt.ylabel("accuracy")
        plt.savefig(f"num-query-exp-{ds}.png")
        plt.close(fig)
示例#5
0
def noise_exp_fig():
    import matplotlib
    matplotlib.use('Agg')
    import matplotlib.pyplot as plt

    for ds in ['mini', 'tiered']:
        with open(f'exp_noise_semi_{ds}.pickle', 'rb') as handle:
            exp_dict = pickle.load(handle)

        x = np.array(list(exp_dict.keys()))
        values = np.array(list(exp_dict.values()))
        y = values[:, 0, :]

        x_plot = range(x.shape[0])

        ax = plt.subplot(111)
        exp_name = ['ica', 'ica & bkm', 'ica & msp']
        y_lim = None
        for n in [*range(y.shape[1])]:
            plt.plot(x_plot, y[:, n].reshape(-1, ), label=exp_name[n], color=get_color(exp_name[n]), linewidth=2)
            if exp_name[n] == 'ica & msp':
                y_lim = np.max(y[:, n])

        if ds == 'mini':
            compare_works = {
                'lst': [70.1, 68.0, 66.00, 64.0, 62.4, 60.8, 60.4, 60.0],
                'tpn': [62.7, 62.4, 61.85, 61.3, 61.00, 60.7, 59.95, 59.2],
                'skm': [62.1, 61.9, 61.40, 60.9, 60.45, 60.0, 59.30, 58.6],
            }
        else:
            compare_works = {
                'lst': [77.7, 76.25, 74.88, 73.5, 72.10, 70.7, 69.35, 68.0],
                'tpn': [72.1, 72.00, 71.75, 71.5, 71.20, 70.9, 69.65, 68.4],
                'skm': [68.6, 67.50, 67.25, 67.0, 66.10, 65.2, 64.88, 64.0],
            }
        for k, v in compare_works.items():
            plt.plot(x_plot, v, label=k, color=get_color(k), linewidth=2)

        ax.legend(loc='upper center', fancybox=True, shadow=True, ncol=3)
        plt.ylim(top=y_lim + 3)
        plt.xticks(x_plot, x)
        plt.grid()
        fig = plt.figure(1)
        plt.xlabel("distracting classes")
        plt.ylabel("accuracy")
        plt.savefig(f"exp-noise-semi-{ds}.png")
        plt.close(fig)
示例#6
0
    def __init__(self, cog: Cog, prefix: str, *, per_page=3):
        if not isinstance(cog, Cog):
            raise TypeError("a valid cog wasn't passed")

        self._prefix = prefix
        self._doc = Embed(title=cog.qualified_name,
                          description=cog.description,
                          color=get_color())
        super().__init__(cog.get_commands(), per_page=per_page)
示例#7
0
def visualize_label(label):
    color = get_color()
    mask = np.zeros(label.shape + (3, ))
    obj_id = np.unique(label)
    # embed()
    for obj in obj_id:
        if obj > 0:
            mask[label == obj] = color[int(obj)]
    return mask
示例#8
0
    def __init__(self, group: Group, prefix: str, *, per_page=3):
        if not isinstance(group, Group):
            raise TypeError("a valid group wasn't passed")

        self._prefix = prefix
        self._doc = Embed(title=f'{prefix}{group.name} {group.signature}',
                          description=format_description(group.help),
                          color=get_color())
        super().__init__(self._flatten_commands(group.commands),
                         per_page=per_page)
 def visualize(self, label, tracker_id):
     # only for inference
     color = get_color()
     masks = torch.zeros(*label.size(), 3, dtype=torch.uint8)
     labels = torch.zeros_like(label)
     max_id = torch.max(label).item()
     for oid in range(max_id + 1):
         masks[label == oid] = torch.tensor(color[tracker_id[oid]])
         labels[label == oid] = torch.tensor([tracker_id[oid] + 1])
     masks = masks * (self.fgmask > 0.5).cpu().squeeze().unsqueeze(-1)
     labels = labels.float() * (self.fgmask > 0.5).cpu().squeeze().float()
     # embed()
     return masks, labels.unsqueeze(-1)
示例#10
0
    async def send_bot_help(self, mapping):
        doc = Embed(color=get_color())
        for cog, commands in mapping.items():
            command_list = '\n'.join(f'{self.clean_prefix}{cmd}'
                                     for cmd in commands)

            if not cog:
                doc.description = command_list
            else:
                doc.add_field(name=cog.qualified_name,
                              value=command_list,
                              inline=False)

        await self.get_destination().send(embed=doc)
示例#11
0
 async def send_error_message(self, error):
     await self.context.send(
         embed=Embed(description=error, color=get_color().value))