def predict(): if model: try: input_df = pd.DataFrame(request.json) predictions = model_utils.predict(input_df, model) return jsonify(predictions) except Exception as e: return jsonify({'error': str(e), 'trace': traceback.format_exc()}) else: print('You need to train a model before you can make predictions.') return 'error: no model'
def predict(): print(model) if model: try: input_df = pd.DataFrame(request.json) predictions = model_utils.predict(input_df, model, model_columns) return jsonify(predictions) except Exception as e: return jsonify({'error': str(e), 'trace': traceback.format_exc()}) else: return jsonify({'error': 'Please train model before trying to predict'})
def predict(): print("Data is\n", request.json) input_df=model_utils.transform(request.json) print("Data transformed\n",input_df) if model: print("model exists") try: #input_df = pd.DataFrame(request.json) predictions = model_utils.predict(input_df, model) #print("Predictions", predictions) return jsonify(predictions) except Exception as e: return jsonify({'error': str(e), 'trace': traceback.format_exc()}) else: print('You need to train a model before you can make predictions.') return 'error: no model'
@st.cache def model_loader(config): model = load_model(config["paths"]["model_path"]) return model model = model_loader(config) st.write(""" # Multi task classifier ## Enter the image url """) url = st.text_input("Enter image url") if url: current_image = download_image(url) predictions = predict(model, current_image, config) col1, col2 = st.beta_columns(2) col1.write("Original image") col1.image(current_image, use_column_width=True) for encoder in predictions.keys(): current_dict = predictions[encoder] current_df = pd.DataFrame( index=current_dict.keys(), data=current_dict.values(), columns=["prediction"], ).sort_values(by="prediction", ascending=False) col2.write(f"{encoder} prediction") col2.dataframe(current_df)