def test_mr_sd(self): drawing = Drawing(1920, 1080) ma = MotionAnalyser(1080, 1920, drawing) ma.analyse((0, 1000), 5) ma.analyse((500, 1000), 5) ma.analyse((0, 0), 0) ma.analyse((0, 216), 0) print(drawing.view_corner) assert drawing.view_corner == (670, 1080)
def test_analyse_gesture_same_in_motion(self): # Setup width = 1920 height = 1080 pos_1 = 0, 0 pos_2 = 1, 6 pos_3 = 5, 4 pos_4 = 2, 4 pos_5 = 11, 0 gesture = 1 drawing = Drawing(width, height) ma = MotionAnalyser(width, height, drawing) ma.analyse(pos_1, gesture) ma.analyse(pos_2, gesture) ma.analyse(pos_3, gesture) ma.analyse(pos_4, gesture) ma.analyse(pos_5, gesture) exp_gesture = gesture exp_pos = pos_5 exp_total_dx = 11 exp_total_dy = 0 assert exp_gesture == ma.ex_gesture assert exp_pos == pytest.approx(ma.ex_pos) assert round(abs(exp_total_dx - ma.total_dx), 7) == 0 assert round(abs(exp_total_dy - ma.total_dy), 7) == 0
def yolo_detection(gesture_lock, phone_cam): labels = open('../model/_darknet.labels').read().strip().split('\n') cfg, weights = '../model/custom-yolov4-detector.cfg', '../model/yolov4-hand-gesture.weights' net = cv2.dnn.readNetFromDarknet(cfgFile=cfg, darknetModel=weights) net.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA) net.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA) layer_names = net.getLayerNames() layer_names = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()] cap, fps = init_cam(phone_cam) # W = cap.get(3) # H = cap.get(4) W = 1920 H = 1080 ma = MotionAnalyser(W, H) while True: frame = cap.read() frame = cv2.flip(frame, 1) class_id = make_prediction(net, layer_names, frame, conf_threshold=0.9) if class_id is not None: # keep previous state, if None gesture_lock.set_gesture(gesture=labels[class_id]) fps.update() if keyboard.is_pressed('esc'): # can't use cv's waitKey, cuz no window break fps.stop() print("Mean fps for detection:", round(fps.fps(), 2))
def test_analyse_gesture_change_on_start(self): # Setup width = 1920 height = 1080 pos = 0, 0 gesture = 1 drawing = Drawing(width, height) ma = MotionAnalyser(width, height, drawing) ma.analyse(pos, gesture) exp_gesture = gesture exp_pos = pos exp_total_dx = 0 exp_total_dy = 0 assert exp_gesture == ma.ex_gesture assert exp_pos == pytest.approx(ma.ex_pos) assert round(abs(exp_total_dx - ma.total_dx), 7) == 0 assert round(abs(exp_total_dy - ma.total_dy), 7) == 0
def test_analyse_gesture_none(self): # Setup width = 1920 height = 1080 pos = 1.23, 3.55 gesture = None drawing = Drawing(width, height) ma = MotionAnalyser(width, height, drawing) ma.analyse(pos, gesture) ma.analyse(pos, gesture) exp_gesture = gesture exp_pos = 0, 0 exp_total_dx = 0 exp_total_dy = 0 assert exp_gesture == ma.ex_gesture assert exp_pos == pytest.approx(ma.ex_pos) assert round(abs(exp_total_dx - ma.total_dx), 7) == 0 assert round(abs(exp_total_dy - ma.total_dy), 7) == 0
def test_draw_after_moving_left(self): drawing = Drawing(1920, 1080) ma = MotionAnalyser(1080, 1920, drawing) frame = np.zeros((1080, 1920, 3), dtype="uint8") ma.analyse((0, 1000), 5) drawing.process_frame(frame=frame, x=None, y=None, area=None, action="Erasing") ma.analyse((500, 1000), 5) drawing.process_frame(frame=frame, x=None, y=None, area=None, action="Erasing") drawing.process_frame(frame=frame, x=300, y=300, area=200, action="Blue") drawing.process_frame(frame=frame, x=300, y=300, area=200, action="Blue") drawing.process_frame(frame=frame, x=400, y=400, area=200, action="Blue") print(drawing.view_corner) for x in range(300, 400): assert (drawing.canvas[x + 1080, x + 670] == np.array([255, 0, 0])).all()
def test_draw_after_color_erase_drawn(self): drawing = Drawing(1920, 1080) ma = MotionAnalyser(1080, 1920, drawing) ma.analyse((0, 0), 5) ma.analyse((0, 300), 5) frame = np.zeros((1080, 1920, 3), dtype="uint8") drawing.process_frame(frame=frame, x=300, y=300, area=196, action="Green") drawing.process_frame(frame=frame, x=300, y=300, area=196, action="Green") drawing.process_frame(frame=frame, x=400, y=400, area=196, action="Green") drawing.process_frame(frame=frame, x=400, y=400, area=196, action="Erasing") drawing.process_frame(frame=frame, x=400, y=400, area=196, action="Erasing") drawing.process_frame(frame=frame, x=300, y=300, area=196, action="Erasing") for x in range(300, 400): assert (drawing.canvas[x + 330, x + 1920] == np.array([0, 0, 0])).all()
def test_draw_after_color_green_to_blue(self): drawing = Drawing(1920, 1080) ma = MotionAnalyser(1080, 1920, drawing) ma.analyse((0, 0), 5) ma.analyse((0, 300), 5) frame = np.zeros((1080, 1920, 3), dtype="uint8") drawing.process_frame(frame=frame, x=300, y=300, area=196, action="Green") drawing.process_frame(frame=frame, x=300, y=300, area=196, action="Green") drawing.process_frame(frame=frame, x=400, y=400, area=196, action="Green") drawing.process_frame(frame=frame, x=400, y=400, area=196, action="Blue") drawing.process_frame(frame=frame, x=400, y=400, area=196, action="Blue") drawing.process_frame(frame=frame, x=350, y=350, area=196, action="Blue") for x in range(300, int(350 - 14 / math.sqrt(2))): assert (drawing.canvas[x + 330, x + 1920] == np.array([0, 255, 0])).all() for x in range(int(350 - 14 / math.sqrt(2)) + 1, 400): assert (drawing.canvas[x + 330, x + 1920] == np.array([255, 0, 0])).all()
def test_analyse_gesture_change(self): # Setup width = 1920 height = 1080 pos = 0, 0 gesture_1 = 1 gesture_2 = 2 gesture_3 = 3 drawing = Drawing(width, height) ma = MotionAnalyser(width, height, drawing) ma.analyse(pos, gesture_1) ma.analyse(pos, gesture_1) ma.analyse(pos, gesture_2) ma.analyse(pos, gesture_2) ma.analyse(pos, gesture_1) ma.analyse(pos, gesture_3) exp_gesture = gesture_3 exp_pos = pos exp_total_dx = pos[0] exp_total_dy = pos[0] assert exp_gesture == ma.ex_gesture assert exp_pos == pytest.approx(ma.ex_pos) assert round(abs(exp_total_dx - ma.total_dx), 7) == 0 assert round(abs(exp_total_dy - ma.total_dy), 7) == 0
def test_draw_after_scaling_down(self): drawing = Drawing(1920, 1080) ma = MotionAnalyser(1080, 1920, drawing) frame = np.zeros((1080, 1920, 3), dtype="uint8") ma.analyse((0, 216), 0) drawing.process_frame(frame=frame, x=None, y=None, area=None, action="Green") ma.analyse((0, 0), 0) drawing.process_frame(frame=frame, x=None, y=None, area=None, action="Green") print(drawing.view_corner, drawing.scale_factor) drawing.process_frame(frame=frame, x=300, y=300, area=200, action="Blue") drawing.process_frame(frame=frame, x=300, y=300, area=200, action="Blue") drawing.process_frame(frame=frame, x=400, y=400, area=200, action="Blue") print(np.where(drawing.canvas > 0)) for x in range(300, 400): assert (drawing.canvas[int(x * 0.5 + 1080), int(x * 0.5 + 1920)] == np.array( [255, 0, 0])).all()
def test_draw_after_color_green_then_blue_and_cross_black(self): drawing = Drawing(1920, 1080) ma = MotionAnalyser(1080, 1920, drawing) ma.analyse((0, 0), 5) ma.analyse((0, 300), 5) frame = np.zeros((1080, 1920, 3), dtype="uint8") drawing.process_frame(frame=frame, x=300, y=300, area=196, action="Green") drawing.process_frame(frame=frame, x=300, y=300, area=196, action="Green") drawing.process_frame(frame=frame, x=400, y=400, area=196, action="Green") drawing.process_frame(frame=frame, x=400, y=400, area=196, action="Blue") drawing.process_frame(frame=frame, x=400, y=400, area=196, action="Blue") drawing.process_frame(frame=frame, x=350, y=350, area=196, action="Blue") drawing.process_frame(frame=frame, x=400, y=300, area=196, action="Black") drawing.process_frame(frame=frame, x=400, y=300, area=196, action="Black") drawing.process_frame(frame=frame, x=300, y=400, area=196, action="Black") # cross top-left part for x in range(300, int(350 - 14 / math.sqrt(2))): assert (drawing.canvas[x + 330, x + 1920] == np.array([0, 255, 0])).all(), x # cross intersection part for x in range(int(350 - 14 / math.sqrt(2)) + 1, int(350 + 14 / math.sqrt(2))): assert (drawing.canvas[x + 330, x + 1920] == np.array([255, 255, 255])).all(), x # after cross intersection, must be same as topleft for x in range(int(350 + 14 / math.sqrt(2)) + 2, 400): assert (drawing.canvas[x + 330, x + 1920] == np.array([255, 0, 0])).all(), x
def main_cam(phone_cam, video_path=None, imgs_paths=None, default_pen_color=None): cap, fps = init_cam(phone_cam, video_path, imgs_paths) fps_count = 0.0 W = cap.get(3) H = cap.get(4) drawing = Drawing(W, H, default_pen_color) ma = MotionAnalyser(W, H, drawing) logger = Logger(drawing, ma) mp_hands = mp.solutions.hands detector = mp_hands.Hands(min_detection_confidence=0.7, min_tracking_confidence=0.5) pairs = { 3: "Yellow", 5: "Erasing", 0: "Green", 2: "Brown", 1: "Blue", 4: "Black" } cv2.namedWindow("Cam", cv2.WINDOW_NORMAL) cv2.setWindowProperty("Cam", cv2.WND_PROP_FULLSCREEN, 1) n_skipped_frames = 0 while True: frame = cap.read() if isinstance(frame, tuple): frame = frame[1] if frame is None or frame.size == 0: n_skipped_frames += 1 print("Skipped", n_skipped_frames) if n_skipped_frames == 90: print("End of sequence") break continue frame = cv2.flip(frame, 1) cv2.setMouseCallback('Cam', callback, (drawing, frame)) n_fingers_l, center_l = count_fingers(frame, detector) x, y, area = drawing.find_pen(frame) if x is None: # no pen in frame ma.analyse(center_l, n_fingers_l) if n_fingers_l is not None: action = pairs[n_fingers_l] text = action + " (" + str(n_fingers_l) + ") " else: action = None text = "None " frame = drawing.process_frame(frame, x, y, area, action) cv2.putText(frame, text=text + str(x), org=(30, 100), fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=2, color=(0, 255, 20), thickness=3) fps.update() if fps._numFrames == 25: fps.stop() fps_count = fps.fps() fps = FPS().start() cv2.putText(frame, text=str(round(fps_count, 1)), org=(1750, 50), fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=2, color=(0, 255, 20), thickness=3) cv2.putText(frame, text=str(round(drawing.scale_factor, 2)), org=(1750, 1000), fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=2, color=(0, 255, 20), thickness=3) cv2.imshow('Cam', frame) logger.log(n_fingers_l, center_l, (x, y), area) if cv2.waitKey(1) & 0xFF == 27: break cv2.destroyAllWindows() return logger
net = cv2.dnn.readNetFromDarknet(cfgFile=cfg, darknetModel=weights) net.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA) net.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA) layer_names = net.getLayerNames() layer_names = [ layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers() ] cap = cv2.VideoCapture(0) address = "http://192.168.1.193:8080/video" cap.open(address) fps = FPS().start() W = cap.get(3) H = cap.get(4) ma = MotionAnalyser(W, H) while cap.isOpened(): ret, frame = cap.read() if not ret: print('Video file finished.') break frame = cv2.flip(frame, 1) conf, class_id, center = make_prediction(net, layer_names, frame, conf_threshold=0.6) if class_id is None: text = "None" else: