def update_accuracy_in_paramters_on_end_then_save_to_json(parameters, history): # append function name to the call sequence calling_sequence.append("[update_paramters]==>>") print(" ==============================================") print(" [INFO] Entering function[update_paramters] in core.py") # save parameters in result sheet # get max validation accuracy and the train accuracy according to it. max_validation_acc = np.max(history.history['val_acc']) index = history.history['val_acc'].index(np.max( history.history['val_acc'])) train_acc_according_to_max_validation_acc = history.history['acc'][index] parameters['train_acc_according_to_max_validation_acc'] = round( train_acc_according_to_max_validation_acc, 4) parameters['max_validation_acc'] = round(max_validation_acc, 4) parameters['best_accuracy_epoch'] = index + 1 parameters['overall_train_accuracy'] = round(history.history['acc'][-1], 4) parameters['overall_validation_accuracy'] = round( history.history['val_acc'][-1], 4) # print(parameters) write_json_parameters(parameters) print(" [INFO] Leaving function[update_paramters] in core.py") print(" ==============================================")
def save_train_result(history, parameters, initiate_new_result_sheet=True): # append function name to the call sequence calling_sequence.append("[save_train_result]==>>") print(" ==============================================") print( " [INFO] Entering function[save_train_result] in core.py INTENT TO CREATE NEW RESULT SHEET = ", initiate_new_result_sheet) # save parameters in result sheet # get max validation accuracy and the train accuracy according to it. max_validation_acc = np.max(history.history['val_acc']) index = history.history['val_acc'].index(np.max( history.history['val_acc'])) train_acc_according_to_max_validation_acc = history.history['acc'][index] parameters['train_acc_according_to_max_validation_acc'] = round( train_acc_according_to_max_validation_acc, 4) parameters['max_validation_acc'] = round(max_validation_acc, 4) parameters['best_accuracy_epoch'] = index + 1 parameters['overall_train_accuracy'] = round( history.history['acc'][len(history.history['acc']) - 1], 4) parameters['overall_validation_accuracy'] = round( history.history['val_acc'][len(history.history['val_acc']) - 1], 4) # get the paramters format that will be written in csv file result_sheet = get_result_parameters(parameters) # convert python dict to pandas data frame result_sheet = pd.DataFrame([result_sheet]) # CHECK IF CREATING NEW .CSV FILE DESIRED OR APPEND TO CURENT ONE if (initiate_new_result_sheet): result_sheet.to_csv(parameters['result_sheet'], index=False) else: previous_result_sheet = pd.read_csv(parameters['result_sheet']) result_sheet = pd.concat([previous_result_sheet, result_sheet], sort=False, ignore_index=True) result_sheet.to_csv(parameters['result_sheet'], index=False) print('===============================================') print(" [INFO] save result at " + str(parameters['model_save_path'])) print('===================SAVED=======================') print(" [INFO] Leaving function[save_train_result] in core.py") print(" ==============================================")
img_t1 = load_tiff_image(root_path + 'images/18_08_2017_image' + '.tif').astype(np.float32) img_t1 = img_t1.transpose((1, 2, 0)) img_t2 = load_tiff_image(root_path + 'images/21_08_2018_image' + '.tif').astype(np.float32) img_t2 = img_t2.transpose((1, 2, 0)) # Concatenation of images image_array1 = np.concatenate((img_t1, img_t2), axis=-1).astype(np.float32) h_, w_, channels = image_array1.shape print(image_array1.shape) # Normalization type_norm = 1 image_array = normalization(image_array1, type_norm) print(np.min(image_array), np.max(image_array)) # Load reference image_ref1 = load_tiff_image(root_path + 'images/REFERENCE_2018_EPSG4674' + '.tif') image_ref = image_ref1[:1700, :1440] past_ref1 = load_tiff_image(root_path + 'images/PAST_REFERENCE_FOR_2018_EPSG4674' + '.tif') unique, counts = np.unique(past_ref1, return_counts=True) counts_dict = dict(zip(unique, counts)) print('=' * 50) print(counts_dict) past_ref = past_ref1[:1700, :1440] # Creation of buffer
def solve_model(header_params,params,header_features,features,debugmsg): #Extracts each parameter fs = params[header_params.index('Fs')] rvent = params[header_params.index('Rvent')] c = params[header_params.index('C')] rins = params[header_params.index('Rins')] rexp = rins # params[4] peep = params[header_params.index('PEEP')] sp = params[header_params.index('SP')] trigger_type = features[header_features.index('Triggertype')] trigger_arg = params[header_params.index('Triggerarg')] rise_type = features[header_features.index('Risetype')] rise_time = params[header_params.index('Risetime')] cycle_off = params[header_params.index('Cycleoff')] rr = params[header_params.index('RR')] pmus_type = features[header_features.index('Pmustype')] pp = params[header_params.index('Pp')] tp = params[header_params.index('Tp')] tf = params[header_params.index('Tf')] noise = params[header_params.index('Noise')] e2 = params[header_params.index('E2')] model = features[header_features.index('Model')] expected_len = int(np.floor(180.0 / np.min(RR) * np.max(Fs)) + 1) #Assings pmus profile pmus = pmus_profile(fs, rr, pmus_type, pp, tp, tf) pmus = pmus + peep #adjusts PEEP pmus = np.concatenate((np.array([0]), pmus)) #sets the first value to zero #Unit conversion from cmH2O.s/L to cmH2O.s/mL rins = rins / 1000.0 rexp = rexp / 1000.0 rvent = rvent / 1000.0 #Generates time, flow, volume, insex and paw waveforms time = np.arange(0, np.floor(60.0 / rr * fs) + 1, 1) / fs time = np.concatenate((np.array([0]), time)) flow = np.zeros(len(time)) volume = np.zeros(len(time)) insex = np.zeros(len(time)) paw = np.zeros(len(time)) + peep #adjusts PEEP len_time = len(time) #Peak flow detection peak_flow = flow[0] detect_peak_flow = False #Support detection detect_support = False time_support = -1 #Expiration detection detect_exp = False time_exp = -1 if trigger_type == 'flow': # units conversion from L/min to mL/s trigger_arg = trigger_arg / 60.0 * 1000.0 for i in range(1, len(time)): # period until the respiratory effort beginning if (((trigger_type == 'flow' and flow[i] < trigger_arg) or (trigger_type == 'pressure' and paw[i] > trigger_arg + peep) or (trigger_type == 'delay' and time[i] < trigger_arg)) and (not detect_support) and (not detect_exp)): paw[i] = peep y0 = volume[i - 1] tspan = [time[i - 1], time[i]] args = (paw[i], pmus[i], model, c, e2, rins) sol = odeint(flow_model, y0, tspan, args=args) volume[i] = sol[-1] flow[i] = flow_model(volume[i], time[i], paw[i], pmus[i], model, c, e2, rins) if debugmsg: print('volume[i]= {:.2f}, flow[i]= {:.2f}, paw[i]= {:.2f}, waiting'.format(volume[i], flow[i], paw[i])) if (((trigger_type == 'flow' and flow[i] >= trigger_arg) or (trigger_type == 'pressure' and paw[i] <= trigger_arg + peep) or (trigger_type == 'delay' and time[i] >= trigger_arg))): detect_support = True time_support = time[i+1] continue # detection of inspiratory effort # ventilator starts to support the patient elif (detect_support and (not detect_exp)): if rise_type == 'step': paw[i] = sp + peep elif rise_type == 'exp': rise_type = rise_type if np.random.random() > 0.01 else 'linear' if paw[i] < sp + peep: paw[i] = (1.0 - np.exp(-(time[i] - time_support) / rise_time )) * sp + peep if paw[i] >= sp + peep: paw[i] = sp + peep elif rise_type == 'linear': rise_type = rise_type if np.random.random() > 0.01 else 'exp' if paw[i] < sp + peep: paw[i] = (time[i] - time_support) / rise_time * sp + peep if paw[i] >= sp + peep: paw[i] = sp + peep y0 = volume[i - 1] tspan = [time[i - 1], time[i]] args = (paw[i], pmus[i], model, c, e2, rins) sol = odeint(flow_model, y0, tspan, args=args) volume[i] = sol[-1] flow[i] = flow_model(volume[i], time[i], paw[i], pmus[i], model, c, e2, rins) if debugmsg: print('volume[i]= {:.2f}, flow[i]= {:.2f}, paw[i]= {:.2f}, supporting'.format(volume[i], flow[i], paw[i])) if flow[i] >= flow[i - 1]: peak_flow = flow[i] detect_peak_flow = False elif flow[i] < flow[i - 1]: detect_peak_flow = True if (flow[i] <= cycle_off * peak_flow) and detect_peak_flow and i<len_time: detect_exp = True time_exp = i+1 try: paw[i + 1] = paw[i] except IndexError: pass elif detect_exp: if rise_type == 'step': paw[i] = peep elif rise_type == 'exp': if paw[i - 1] > peep: paw[i] = sp * (np.exp(-(time[i] - time[time_exp-1]) / rise_time )) + peep if paw[i - 1] <= peep: paw[i] = peep elif rise_type == 'linear': rise_type = rise_type if np.random.random() > 0.01 else 'exp' if paw[i - 1] > peep: paw[i] = sp * (1 - (time[i] - time[time_exp-1]) / rise_time) + peep if paw[i - 1] <= peep: paw[i] = peep y0 = volume[i - 1] tspan = [time[i - 1], time[i]] args = (paw[i], pmus[i], model, c, e2, rexp + rvent) sol = odeint(flow_model, y0, tspan, args=args) volume[i] = sol[-1] flow[i] = flow_model(volume[i], time[i], paw[i], pmus[i], model, c, e2, rexp + rvent) if debugmsg: print('volume[i]= {:.2f}, flow[i]= {:.2f}, paw[i]= {:.2f}, exhaling'.format(volume[i], flow[i], paw[i])) #Generates InsEx trace if time_exp > -1: insex = np.concatenate((np.ones(time_exp), np.zeros(len(time) - time_exp))) #Drops the first element flow = flow[1:] / 1000.0 * 60.0 # converts back to L/min volume = volume[1:] paw = paw[1:] pmus = pmus[1:] - peep #reajust peep again insex = insex[1:] flow,volume,pmus,insex,paw = generate_cycle(expected_len,flow,volume,pmus,insex,paw,peep=peep) # paw = generate_cycle(expected_len,paw,peep=peep)[0] flow,volume,paw,pmus,insex = generate_noise(noise,flow,volume,paw,pmus,insex) # plt.plot(flow) # plt.plot(volume) # plt.plot(paw) # plt.plot(pmus) # plt.show() return flow, volume, paw, pmus, insex, rins,rexp, c