def __init__(self, cfg): self.cfg = cfg opt = option.parse(cfg, is_train=False) opt = option.dict_to_nonedict(opt) utils.util.loaded_options = opt util.mkdirs((path for key, path in opt['path'].items() if not key == 'experiments_root' and 'pretrain_model' not in key and 'resume' not in key)) util.setup_logger('base', opt['path']['log'], 'test_' + opt['name'], level=logging.INFO, screen=True, tofile=True) logger = logging.getLogger('base') logger.info(option.dict2str(opt)) #### Create test dataset and dataloader dataset_opt = list(opt['datasets'].values())[0] # Remove labeling features from the dataset config and wrappers. if 'dataset' in dataset_opt.keys(): if 'labeler' in dataset_opt['dataset'].keys(): dataset_opt['dataset']['includes_labels'] = False del dataset_opt['dataset']['labeler'] test_set = create_dataset(dataset_opt) if hasattr(test_set, 'wrapped_dataset'): test_set = test_set.wrapped_dataset else: test_set = create_dataset(dataset_opt) logger.info('Number of test images: {:d}'.format(len(test_set))) self.test_loader = create_dataloader(test_set, dataset_opt, opt) self.model = ExtensibleTrainer(opt) self.gen = self.model.netsG['generator'] self.dataset_dir = osp.join(opt['path']['results_root'], opt['name']) util.mkdir(self.dataset_dir)
#parser.add_argument('-opt', type=str, help='Path to options YAML file.', default='../../options/train_exd_imgsetext_srflow_bigboi_frompsnr.yml') opt = option.parse(parser.parse_args().opt, is_train=False) opt = option.dict_to_nonedict(opt) utils.util.loaded_options = opt util.mkdirs((path for key, path in opt['path'].items() if not key == 'experiments_root' and 'pretrain_model' not in key and 'resume' not in key)) util.setup_logger('base', opt['path']['log'], 'test_' + opt['name'], level=logging.INFO, screen=True, tofile=True) logger = logging.getLogger('base') logger.info(option.dict2str(opt)) model = ExtensibleTrainer(opt) gen = model.networks['generator'] gen.eval() mode = "feed_through" # temperature | restore | latent_transfer | feed_through #imgs_to_resample_pattern = "F:\\4k6k\\datasets\\ns_images\\adrianna\\val2\\lr\\*" imgs_to_resample_pattern = "F:\\4k6k\\datasets\\ns_images\\adrianna\\analyze\\analyze_xx\\*" #imgs_to_resample_pattern = "F:\\4k6k\\datasets\\ns_images\\imagesets\\images-half\\*lanette*" scale = 2 resample_factor = 2 # When != 1, the HR image is upsampled by this factor using a bicubic to get the local latents. E.g. set this to '2' to get 2x upsampling. temperature = 1 output_path = "..\\..\\results\\latent_playground" # Data types <- used to perform latent transfer.
def init(self, opt, launcher, all_networks={}): self._profile = False self.val_compute_psnr = opt_get(opt, ['eval', 'compute_psnr'], False) self.val_compute_fea = opt_get(opt, ['eval', 'compute_fea'], False) #### loading resume state if exists if opt['path'].get('resume_state', None): # distributed resuming: all load into default GPU device_id = torch.cuda.current_device() resume_state = torch.load( opt['path']['resume_state'], map_location=lambda storage, loc: storage.cuda(device_id)) option.check_resume(opt, resume_state['iter']) # check resume options else: resume_state = None #### mkdir and loggers if self.rank <= 0: # normal training (self.rank -1) OR distributed training (self.rank 0) if resume_state is None: util.mkdir_and_rename( opt['path'] ['experiments_root']) # rename experiment folder if exists util.mkdirs( (path for key, path in opt['path'].items() if not key == 'experiments_root' and path is not None and 'pretrain_model' not in key and 'resume' not in key)) # config loggers. Before it, the log will not work util.setup_logger('base', opt['path']['log'], 'train_' + opt['name'], level=logging.INFO, screen=True, tofile=True) self.logger = logging.getLogger('base') self.logger.info(option.dict2str(opt)) # tensorboard logger if opt['use_tb_logger'] and 'debug' not in opt['name']: self.tb_logger_path = os.path.join( opt['path']['experiments_root'], 'tb_logger') version = float(torch.__version__[0:3]) if version >= 1.1: # PyTorch 1.1 from torch.utils.tensorboard import SummaryWriter else: self.self.logger.info( 'You are using PyTorch {}. Tensorboard will use [tensorboardX]' .format(version)) from tensorboardX import SummaryWriter self.tb_logger = SummaryWriter(log_dir=self.tb_logger_path) else: util.setup_logger('base', opt['path']['log'], 'train', level=logging.INFO, screen=True) self.logger = logging.getLogger('base') # convert to NoneDict, which returns None for missing keys opt = option.dict_to_nonedict(opt) self.opt = opt #### wandb init if opt['wandb'] and self.rank <= 0: import wandb os.makedirs(os.path.join(opt['path']['log'], 'wandb'), exist_ok=True) wandb.init(project=opt['name'], dir=opt['path']['log']) #### random seed seed = opt['train']['manual_seed'] if seed is None: seed = random.randint(1, 10000) if self.rank <= 0: self.logger.info('Random seed: {}'.format(seed)) seed += self.rank # Different multiprocessing instances should behave differently. util.set_random_seed(seed) torch.backends.cudnn.benchmark = True # torch.backends.cudnn.deterministic = True if opt_get(opt, ['anomaly_detection'], False): torch.autograd.set_detect_anomaly(True) # Save the compiled opt dict to the global loaded_options variable. util.loaded_options = opt #### create train and val dataloader dataset_ratio = 1 # enlarge the size of each epoch for phase, dataset_opt in opt['datasets'].items(): if phase == 'train': self.train_set, collate_fn = create_dataset( dataset_opt, return_collate=True) train_size = int( math.ceil(len(self.train_set) / dataset_opt['batch_size'])) total_iters = int(opt['train']['niter']) self.total_epochs = int(math.ceil(total_iters / train_size)) if opt['dist']: self.train_sampler = DistIterSampler( self.train_set, self.world_size, self.rank, dataset_ratio) self.total_epochs = int( math.ceil(total_iters / (train_size * dataset_ratio))) else: self.train_sampler = None self.train_loader = create_dataloader(self.train_set, dataset_opt, opt, self.train_sampler, collate_fn=collate_fn) if self.rank <= 0: self.logger.info( 'Number of train images: {:,d}, iters: {:,d}'.format( len(self.train_set), train_size)) self.logger.info( 'Total epochs needed: {:d} for iters {:,d}'.format( self.total_epochs, total_iters)) elif phase == 'val': self.val_set, collate_fn = create_dataset(dataset_opt, return_collate=True) self.val_loader = create_dataloader(self.val_set, dataset_opt, opt, None, collate_fn=collate_fn) if self.rank <= 0: self.logger.info( 'Number of val images in [{:s}]: {:d}'.format( dataset_opt['name'], len(self.val_set))) else: raise NotImplementedError( 'Phase [{:s}] is not recognized.'.format(phase)) assert self.train_loader is not None #### create model self.model = ExtensibleTrainer(opt, cached_networks=all_networks) ### Evaluators self.evaluators = [] if 'eval' in opt.keys() and 'evaluators' in opt['eval'].keys(): for ev_key, ev_opt in opt['eval']['evaluators'].items(): self.evaluators.append( create_evaluator(self.model.networks[ev_opt['for']], ev_opt, self.model.env)) #### resume training if resume_state: self.logger.info( 'Resuming training from epoch: {}, iter: {}.'.format( resume_state['epoch'], resume_state['iter'])) self.start_epoch = resume_state['epoch'] self.current_step = resume_state['iter'] self.model.resume_training( resume_state, 'amp_opt_level' in opt.keys()) # handle optimizers and schedulers else: self.current_step = -1 if 'start_step' not in opt.keys( ) else opt['start_step'] self.start_epoch = 0 if 'force_start_step' in opt.keys(): self.current_step = opt['force_start_step'] opt['current_step'] = self.current_step