edges=edges, iter=iter_node, chunksize=batch_size) cont_learner.train(model, paths=graph_utils.combine_files_iter(walk_files), total_nodes=context_total_path, alpha=alpha, chunksize=batch_size) com_learner.fit(model, reg_covar=reg_covar, n_init=10) com_learner.train(G.nodes(), model, beta, chunksize=batch_size, iter=iter_com) log.info('time: %.2fs' % (timeit.default_timer() - start_time)) node_color = plot_utils.graph_plot(G, graph_name=input_file, show=False) plot_utils.node_space_plot_2D_elipsoid(model.node_embedding, node_color, means=model.centroid, covariances=model.covariance_mat, show=True) # io_utils.save_embedding(model.node_embedding, model.vocab, # file_name="{}_alpha-{}_beta-".format(output_file, # alpha, # beta))
import numpy as np input_file = 'karate' node_embedding = io_utils.load_embedding( path='../data', file_name="{}_my_ComE_l1-0_l2-0_ds-0_it-0".format(input_file), ext=".txt") g = mixture.GaussianMixture(n_components=2, reg_covar=0.000001, covariance_type='full', n_init=5) g.fit(node_embedding) centroid = np.float32(g.means_) covariance_mat = np.float32(g.covariances_) G = graph_utils.load_adjacencylist( path_join("../data/", input_file, input_file + '.adjlist'), True) node_color = plot_utils.graph_plot(G=G, show=False, graph_name="karate", node_position_file=True, node_position_path='../data') plot_utils.node_space_plot_2D_elipsoid(node_embedding, means=centroid, covariances=covariance_mat, color_values=node_color, grid=False, show=True)
node_classification) print( f"===NMI=== for type={come_model_type} with d={representation_size} and K={k}: ", nmi) else: print( f"===NMI=== for type={come_model_type} with d={representation_size} and K={k} could not be computed" ) # ### plotting plot_name = f"{come_model_type}_d{representation_size}_k{k}" if should_plot: # graph_plot plot_utils.graph_plot(G, labels=node_classification, plot_name=plot_name, path=f"./plots/{output_file}", save=True, show_labels=False) # node_space_plot_2D plot_utils.node_space_plot_2d(model.node_embedding, labels=node_classification, plot_name=plot_name, path=f"./plots/{output_file}", save=True) # node_space_plot_2d_ellipsoid plot_utils.node_space_plot_2d_ellipsoid( model.node_embedding, labels=node_classification, means=com_learner.g_mixture.means_, covariances=com_learner.g_mixture.covariances_, plot_name=plot_name,