示例#1
0
    def verify_model(self):
        """
        处理标记文件夹
        :param img_folder: 图片文件夹
        :param out_folder:
        :return:
        """
        yolo = YoloV3(model_path=self.model_path,
                      classes_path=self.classes_path,
                      anchors_path=self.anchors_path)  # yolo算法类

        img_dict = format_img_and_anno(self.img_folder)

        res_dict = dict()
        for count, img_name in enumerate(img_dict):
            print_info('-' * 50)
            print_info('图片: {}'.format(img_name))
            (img_p, anno_p) = img_dict[img_name]
            _, precision, recall = self.detect_img(yolo, img_p, anno_p,
                                                   self.out_folder)
            res_dict[img_name] = (precision, recall)
            if count == 10:
                break

        ap, ar = 0, 0
        for name in res_dict.keys():
            precision, recall = res_dict[name]
            ap += precision
            ar += recall

        mAp = safe_div(ap, len(res_dict.keys()))
        mAr = safe_div(ar, len(res_dict.keys()))
        print_info('平均精准率: {:.4f} %, 平均召回率: {:.4f} %'.format(
            mAp * 100, mAr * 100))
示例#2
0
    def iou_of_boxes(boxes1, boxes2):
        """
        框的IOU
        :param boxes1_: 真值
        :param boxes2_: 预测
        :return: 精准和召回
        """
        res_list = []

        boxes1_ = copy.deepcopy(boxes1)
        boxes2_ = copy.deepcopy(boxes2)

        t1, t2 = len(boxes1_), len(boxes2_)

        for box1 in boxes1_:
            final_iou = 0
            final_box = None
            for box2 in boxes2_:
                iou = bb_intersection_over_union(box1, box2)
                if iou > final_iou:
                    final_iou = iou
                    final_box = box2
            if final_iou > 0.5:
                res_list.append((box1, final_box, final_iou))
                boxes2_.remove(final_box)

        tr = len(res_list)

        if tr == 0:  # 没有检测源, 则认为正确
            if t1 == 0 and t2 != 0:
                recall, precision = 1.0, 0.0
            elif t1 != 0 and t2 == 0:
                recall, precision = 0.0, 1.0
            elif t1 != 0 and t2 != 0:
                recall, precision = 0.0, 0.0
            else:
                recall, precision = 1.0, 1.0
        else:
            recall = safe_div(tr, t1)  # 召回率
            precision = safe_div(tr, t2)  # 精准率

        print_info('精准: {:.4f}, 召回: {:.4f}, 匹配结果: {}'.format(
            precision, recall, res_list))

        return [precision, recall]
示例#3
0
    def verify_model(self):
        """
        处理标记文件夹
        :param img_folder: 图片文件夹
        :param out_folder:
        :return:
        """
        img_dict = format_img_and_anno(self.img_folder)

        res_list = []
        for count, img_name in enumerate(img_dict):
            print_info('-' * 50)
            print_info('图片: {}'.format(img_name))
            (img_p, anno_p) = img_dict[img_name]
            try:
                res_dict = self.detect_img(img_p, anno_p, self.out_folder)
            except Exception as e:
                print_ex('检测异常: {}'.format(e))
                continue
            res_list.append(res_dict)
            # if count == 10:
            #     break
        print_info('-' * 50)

        for target_name in (['all'] + self.targets_name):
            if target_name in ['truck', 'bus']:
                continue
            ap, ar, count = 0, 0, 0
            for pr_dict in res_list:
                if target_name in pr_dict:
                    tp, tr = pr_dict[target_name]
                    ap += tp
                    ar += tr
                    count += 1
            mAp = safe_div(ap, count)
            mAr = safe_div(ar, count)

            print_info('类: {} P: {:.4f} %, R: {:.4f} %'.format(
                target_name, mAp * 100, mAr * 100))
示例#4
0
    def iou_of_boxes(boxes1, boxes2):
        res_list = []
        for box1 in boxes1:
            final_iou = 0
            final_box = None
            for box2 in boxes2:
                iou = bb_intersection_over_union(box1, box2)
                if iou > final_iou:
                    final_iou = iou
                    final_box = box2
            if final_iou > 0.5:
                res_list.append((box1, final_box, final_iou))

        t1, t2, tr = len(boxes1), len(boxes2), len(res_list)

        if tr == 0:  # 没有检测源, 则认为正确
            return [1.0, 1.0]

        recall = safe_div(tr, t1)  # 召回率
        precision = safe_div(tr, t2)  # 精准率
        print_info('精准: {:.4f}, 召回: {:.4f}, 匹配结果: {}'.format(
            precision, recall, res_list))
        return [precision, recall]
示例#5
0
def get_batch_acc(outputs, labels):
    """
    multiLabel acc, all values are same, is right
    :param outputs: predictions
    :param labels: ground truth
    :return: acc percent, num of right, num of all
    """
    outputs = sigmoid(outputs)

    outputs = outputs.asnumpy()
    labels = labels.asnumpy().astype('int')

    print(labels[0])
    outputs = np.where(outputs > 0.5, 1, 0)  # 类别阈值0.5
    print(outputs[0])
    rights = np.sum(np.where(labels == outputs, 0, 1), axis=1)
    n_right = np.count_nonzero(rights == 0)  # 全0的即全部相等
    return safe_div(n_right, len(labels)), n_right, len(labels)
示例#6
0
def main():
    ym = Y3Model()
    img_folder = os.path.join(IMG_DATA, 'jiaotong-0727')
    right_folder = os.path.join(IMG_DATA, 'jiaotong-0727-right')
    wrong_folder = os.path.join(IMG_DATA, 'jiaotong-0727-wrong')
    none_folder = os.path.join(IMG_DATA, 'jiaotong-0727-none')
    mkdir_if_not_exist(right_folder, is_delete=True)
    mkdir_if_not_exist(wrong_folder, is_delete=True)
    mkdir_if_not_exist(none_folder, is_delete=True)
    img_dict = format_img_and_anno(img_folder)

    r_count = 0
    all_count = 0
    no_recall_count = 0

    for count, img_name in enumerate(img_dict):
        (img_p, anno_p) = img_dict[img_name]
        # print(img_p)
        try:
            tag_res, img_box = ym.detect_img(img_p, True)
        except Exception as e:
            continue

        w_tags = []
        for tag in tag_res.keys():
            if tag_res[tag] <= 0.01:
                print_info('删除Tag {} {}'.format(tag, tag_res[tag]))
                w_tags.append(tag)
        for tag in w_tags:
            tag_res.pop(tag, None)  # 小于1%的类别

        all_count += 1
        p_classes = set(tag_res.keys())

        _, t_classes = read_anno_xml(anno_p)
        merge_dict = {'truck': 'car', 'bus': 'car', 'car': 'car'}  # 合并类别
        t_classes = map_classes(merge_dict, t_classes)  # 合并类别
        traffic_names = [
            'bicycle', 'car', 'motorbike', 'aeroplane', 'bus', 'train',
            'truck', 'boat'
        ]
        t_classes = set(t_classes) & set(traffic_names)

        img_name = img_p.split('/')[-1]
        is_right = False

        if p_classes and p_classes.issubset(t_classes):  # 检测正确
            r_count += 1
            img_box.save(os.path.join(right_folder, img_name + '.d.jpg'))
            is_right = True
        elif not p_classes and not t_classes:  # 空,检测正确
            r_count += 1
            if not img_box:
                img_box = Image.open(img_p)
            img_box.save(os.path.join(right_folder, img_name + '.d.jpg'))
            is_right = True
        elif not p_classes and t_classes:  # 检测为空,实际有类
            if not img_box:
                img_box = Image.open(img_p)
            img_box.save(os.path.join(none_folder, img_name + '.d.jpg'))
            no_recall_count += 1  # 未召回
            r_count += 1
            is_right = True
        else:  # 其他,检测错误
            if not img_box:
                img_box = Image.open(img_p)
            img_box.save(os.path.join(wrong_folder, img_name + '.d.jpg'))

        print_info('P: {}, T: {}, {}'.format(list(p_classes), list(t_classes),
                                             '正确' if is_right else '错误'))

    right_ratio = safe_div(r_count, all_count)
    print_info('正确: {}, 全部: {}, 未召回: {}, 准确率: {}'.format(
        r_count, all_count, no_recall_count, right_ratio))